Electrochemical strategies for urea synthesis via C–N coupling of integrated carbon oxide–nitrogenous molecule reduction

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-07-03 DOI:10.1039/D4TA02891K
Jayaraman Theerthagiri, K. Karuppasamy, Gilberto Maia, M. L. Aruna Kumari, Ahreum Min, Cheol Joo Moon, Marciélli K. R. Souza, Neshanth Vadivel, Arun Prasad Murthy, Soorathep Kheawhom, Akram Alfantazi and Myong Yong Choi
{"title":"Electrochemical strategies for urea synthesis via C–N coupling of integrated carbon oxide–nitrogenous molecule reduction","authors":"Jayaraman Theerthagiri, K. Karuppasamy, Gilberto Maia, M. L. Aruna Kumari, Ahreum Min, Cheol Joo Moon, Marciélli K. R. Souza, Neshanth Vadivel, Arun Prasad Murthy, Soorathep Kheawhom, Akram Alfantazi and Myong Yong Choi","doi":"10.1039/D4TA02891K","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical coupling of C and N has sparked considerable research attention, heralded as a capable method to curb carbon and nitrogen emissions while concurrently storing surplus renewable electricity in valuable chemical compounds such as urea, amides, and amines. Electrocatalytic urea synthesis <em>via</em> a C–N coupling reaction (CNCR) comprises the electroreduction of CO<small><sub>2</sub></small> alongside the coreduction of various inorganic nitrogen sources (NO<small><sub>3</sub></small><small><sup>−</sup></small>, NO<small><sub>2</sub></small><small><sup>−</sup></small>, N<small><sub>2</sub></small>, and NO). However, the main hurdles for this electrochemical C–N coupling are the inert nature of the involved molecules and the prevalence of competing side reactions. This review comprehensively examines recent advancements in electrocatalytic C–N coupling, emphasizing the various mechanistic pathways involved in urea production, including the CO<small><sub>2</sub></small> reduction and NO<small><sub>3</sub></small> reduction reaction. Additionally, electrochemical key performance parameters and future advancement directions for electrocatalytic urea production are discussed. The electrochemical CNCR accomplishes effective resource use and delivers direction and reference for molecular coupling reactions. The insights gleaned from these observations may illuminate the development of effective catalysts in forthcoming research and expand the potential applications in green urea production.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta02891k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical coupling of C and N has sparked considerable research attention, heralded as a capable method to curb carbon and nitrogen emissions while concurrently storing surplus renewable electricity in valuable chemical compounds such as urea, amides, and amines. Electrocatalytic urea synthesis via a C–N coupling reaction (CNCR) comprises the electroreduction of CO2 alongside the coreduction of various inorganic nitrogen sources (NO3, NO2, N2, and NO). However, the main hurdles for this electrochemical C–N coupling are the inert nature of the involved molecules and the prevalence of competing side reactions. This review comprehensively examines recent advancements in electrocatalytic C–N coupling, emphasizing the various mechanistic pathways involved in urea production, including the CO2 reduction and NO3 reduction reaction. Additionally, electrochemical key performance parameters and future advancement directions for electrocatalytic urea production are discussed. The electrochemical CNCR accomplishes effective resource use and delivers direction and reference for molecular coupling reactions. The insights gleaned from these observations may illuminate the development of effective catalysts in forthcoming research and expand the potential applications in green urea production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过集成氧化碳-含氮分子还原的 C-N 耦合合成尿素的电化学策略
碳和氮的电化学偶联反应引发了相当多的研究关注,被认为是一种能够抑制碳和氮排放的方法,同时还能将剩余的可再生电力储存在尿素、酰胺和胺等有价值的化合物中。通过 C-N 偶联反应(CNCR)进行电催化尿素合成包括二氧化碳的电还原以及各种无机氮源(NO3-、NO2-、N2 和 NO)的核还原。然而,这种电化学 C-N 偶联反应的主要障碍是所涉及分子的惰性和竞争副反应的普遍存在。本综述全面探讨了电催化 C-N 偶联的最新进展,强调了尿素生产中涉及的各种机理途径,包括 CO2 还原和 NO3 还原反应。此外,还对电催化尿素生产的电化学关键性能参数和未来发展方向进行了展望。电化学 CNCR 实现了资源的有效利用,并为分子耦合反应提供了方向和参考。从这些观察中获得的启示可能有助于在未来的研究中开发有效的催化剂,并扩大在绿色尿素生产中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Catalytic kinetic growth of half-metallic hexagonal boron nitride-graphene lateral heterostructure by transition metal single-atom catalyst on Rh(111) Enhanced Thermoelectric and Mechanical Performance of Fully Conjugated Block Polythiophene Modified with Polar Ethylene Glycol Side Chains/Single-Walled Carbon Nanotube Composite Materials Pottery glaze-derived sintering aid for the synthesis of NASICON electrolyte with high ionic conductivity and relative density Continuous fabrication of MOF-based memory elements via droplet microfluidic synthesis Inorganic Ligand-Protected Synthesis and Characterization of {Ag6} Cluster within Annular Polyoxometalate†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1