Recent Advances of Biocompatible Optical Nanobiosensors in Liquid Biopsy: Towards Early Non-Invasive Diagnosis

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-07-02 DOI:10.1039/d4nr01719f
Ya Na, Dangui Zhang, Yan Wang, Yi Zheng, Mo Yang, Hao Wu, Gerile Oudeng
{"title":"Recent Advances of Biocompatible Optical Nanobiosensors in Liquid Biopsy: Towards Early Non-Invasive Diagnosis","authors":"Ya Na, Dangui Zhang, Yan Wang, Yi Zheng, Mo Yang, Hao Wu, Gerile Oudeng","doi":"10.1039/d4nr01719f","DOIUrl":null,"url":null,"abstract":"Liquid biopsy is a non-invasive diagnostic method that can reduce the risk of complications and offers exceptional benefits in the dynamic monitoring and acquisition of heterogeneous cell population information. Optical nanomaterials with excellent light absorption, luminescence, and photoelectrochemical properties have accelerated the development of liquid biopsy technologies. Owing to the unique size effect of optical nanomaterials, their improved optical properties enable them to exhibit good sensitivity and specificity for mitigating signal interference from various molecules in body fluids. Nanomaterials with biocompatible and optical sensing properties play a crucial role in advancing the maturity and diversification of liquid biopsy technologies. This article offers a comprehensive review of recent advanced liquid biopsy technologies that utilize novel biocompatible optical nanomaterials, including fluorescence, colorimetric, photoelectrochemical, and Raman broad-spectrum-based biosensors. We focused on liquid biopsy for the most significant early biomarkers in clinical medicine, and specifically reviewed reports on the effectiveness of optical nanosensing technology in the detection of real patient samples, which may provide basic evidence for the transition of optical nanosensing technology from engineering design to clinical practice. Furthermore, we introduced the integration of optical nanosensing-based liquid biopsy with modern devices, such as smartphones, to demonstrate the potential of optical nanosensing technology in portable clinical diagnosis.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr01719f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid biopsy is a non-invasive diagnostic method that can reduce the risk of complications and offers exceptional benefits in the dynamic monitoring and acquisition of heterogeneous cell population information. Optical nanomaterials with excellent light absorption, luminescence, and photoelectrochemical properties have accelerated the development of liquid biopsy technologies. Owing to the unique size effect of optical nanomaterials, their improved optical properties enable them to exhibit good sensitivity and specificity for mitigating signal interference from various molecules in body fluids. Nanomaterials with biocompatible and optical sensing properties play a crucial role in advancing the maturity and diversification of liquid biopsy technologies. This article offers a comprehensive review of recent advanced liquid biopsy technologies that utilize novel biocompatible optical nanomaterials, including fluorescence, colorimetric, photoelectrochemical, and Raman broad-spectrum-based biosensors. We focused on liquid biopsy for the most significant early biomarkers in clinical medicine, and specifically reviewed reports on the effectiveness of optical nanosensing technology in the detection of real patient samples, which may provide basic evidence for the transition of optical nanosensing technology from engineering design to clinical practice. Furthermore, we introduced the integration of optical nanosensing-based liquid biopsy with modern devices, such as smartphones, to demonstrate the potential of optical nanosensing technology in portable clinical diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液体活检中生物兼容纳米光学生物传感器的最新进展:实现早期无创诊断
液体活检是一种无创诊断方法,可降低并发症风险,并在动态监测和获取异质细胞群信息方面具有独特优势。具有优异光吸收、发光和光电化学特性的光学纳米材料加速了液体活检技术的发展。由于光学纳米材料具有独特的尺寸效应,其改进的光学特性使其能够表现出良好的灵敏度和特异性,从而减轻体液中各种分子对信号的干扰。具有生物相容性和光学传感特性的纳米材料在推动液体活检技术的成熟和多样化方面发挥着至关重要的作用。本文全面综述了利用新型生物相容性光学纳米材料的最新先进液体活检技术,包括荧光、比色、光电化学和拉曼广谱生物传感器。我们重点研究了临床医学中最重要的早期生物标记物--液体活检,并特别回顾了光学纳米传感技术在实际患者样本检测中的有效性报告,这些报告可为光学纳米传感技术从工程设计过渡到临床实践提供基础证据。此外,我们还介绍了基于光学纳米传感技术的液体活检与智能手机等现代设备的整合,以展示光学纳米传感技术在便携式临床诊断中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
Quantum engineering of radiative properties of a nanoscale mesoscopic system High-performance flexible photodetectors based on CdTe/MoS2 heterojunction. Hydrogen production catalysed by atomically precise metal clusters. Tailoring the Pore Structure of Iron Oxide Core@Stellate Mesoporous Silica Shell Nanocomposites: Effects on MRI and Magnetic Hyperthermia Properties and Applicability to Anti-Cancer Therapies Novel three-dimensional fibrous covalent organic framework constructed via silver amalgam bridging for efficient organic dye adsorption and removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1