Further analysis of multilevel Stein variational gradient descent with an application to the Bayesian inference of glacier ice models

IF 2.1 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2024-07-03 DOI:10.1007/s10444-024-10153-4
Terrence Alsup, Tucker Hartland, Benjamin Peherstorfer, Noemi Petra
{"title":"Further analysis of multilevel Stein variational gradient descent with an application to the Bayesian inference of glacier ice models","authors":"Terrence Alsup,&nbsp;Tucker Hartland,&nbsp;Benjamin Peherstorfer,&nbsp;Noemi Petra","doi":"10.1007/s10444-024-10153-4","DOIUrl":null,"url":null,"abstract":"<div><p>Multilevel Stein variational gradient descent is a method for particle-based variational inference that leverages hierarchies of surrogate target distributions with varying costs and fidelity to computationally speed up inference. The contribution of this work is twofold. First, an extension of a previous cost complexity analysis is presented that applies even when the exponential convergence rate of single-level Stein variational gradient descent depends on iteration-varying parameters. Second, multilevel Stein variational gradient descent is applied to a large-scale Bayesian inverse problem of inferring discretized basal sliding coefficient fields of the Arolla glacier ice. The numerical experiments demonstrate that the multilevel version achieves orders of magnitude speedups compared to its single-level version.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10153-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Multilevel Stein variational gradient descent is a method for particle-based variational inference that leverages hierarchies of surrogate target distributions with varying costs and fidelity to computationally speed up inference. The contribution of this work is twofold. First, an extension of a previous cost complexity analysis is presented that applies even when the exponential convergence rate of single-level Stein variational gradient descent depends on iteration-varying parameters. Second, multilevel Stein variational gradient descent is applied to a large-scale Bayesian inverse problem of inferring discretized basal sliding coefficient fields of the Arolla glacier ice. The numerical experiments demonstrate that the multilevel version achieves orders of magnitude speedups compared to its single-level version.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层次斯泰因变分梯度下降法的进一步分析及其在冰川冰模型贝叶斯推断中的应用
多层次斯坦因变分梯度下降法是一种基于粒子的变分推理方法,它利用具有不同成本和保真度的代用目标分布层次来加快推理计算速度。这项工作有两方面的贡献。首先,本文对之前的成本复杂性分析进行了扩展,即使单级斯坦因变分梯度下降的指数收敛率取决于迭代变化的参数时,该分析也适用。其次,将多级斯坦因变分梯度下降法应用于推断阿罗拉冰川冰面离散化基底滑动系数场的大规模贝叶斯逆问题。数值实验证明,与单级版本相比,多级版本的速度提高了几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
An inertial reflected-forward-backward splitting method for monotone inclusions with improved step size Data-driven optimal approximation on Hardy spaces in simply connected domains Online learning algorithms tackling covariate shift Bisparse blind deconvolution through hierarchical sparse recovery Asymptotically steerable finite Fourier-Bessel transforms and closure under convolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1