The application of nanomaterials in tumor therapy based on the regulation of mechanical properties

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-07-02 DOI:10.1039/D4NR01812E
Xiaolei Wang, Hongxi Yu, Dan Liu, Boxian Hu, Ruihang Zhang, Lihua Hu, Guiping Hu and Cheng Li
{"title":"The application of nanomaterials in tumor therapy based on the regulation of mechanical properties","authors":"Xiaolei Wang, Hongxi Yu, Dan Liu, Boxian Hu, Ruihang Zhang, Lihua Hu, Guiping Hu and Cheng Li","doi":"10.1039/D4NR01812E","DOIUrl":null,"url":null,"abstract":"<p >Mechanical properties, as crucial physical properties, have a significant impact on the occurrence, development, and metastasis of tumors. Regulating the mechanical properties of tumors to enhance their sensitivity to radiotherapy and chemotherapy has become an important strategy in the field of cancer treatment. Over the past few decades, nanomaterials have made remarkable progress in cancer therapy, either based on their intrinsic properties or as drug delivery carriers. However, the investigation of nanomaterials of mechanical regulation in tumor therapy is currently in its initial stages. The mechanical properties of nanomaterials themselves, drug carrier targeting, and regulation of the mechanical environment of tumor tissue have far-reaching effects on the efficient uptake of drugs and clinical tumor treatment. Therefore, this review aims to comprehensively summarize the applications and research progress of nanomaterials in tumor therapy based on the regulation of mechanical properties, in order to provide strong support for further research and the development of treatment strategies in this field.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01812e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical properties, as crucial physical properties, have a significant impact on the occurrence, development, and metastasis of tumors. Regulating the mechanical properties of tumors to enhance their sensitivity to radiotherapy and chemotherapy has become an important strategy in the field of cancer treatment. Over the past few decades, nanomaterials have made remarkable progress in cancer therapy, either based on their intrinsic properties or as drug delivery carriers. However, the investigation of nanomaterials of mechanical regulation in tumor therapy is currently in its initial stages. The mechanical properties of nanomaterials themselves, drug carrier targeting, and regulation of the mechanical environment of tumor tissue have far-reaching effects on the efficient uptake of drugs and clinical tumor treatment. Therefore, this review aims to comprehensively summarize the applications and research progress of nanomaterials in tumor therapy based on the regulation of mechanical properties, in order to provide strong support for further research and the development of treatment strategies in this field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机械性能调节的纳米材料在肿瘤治疗中的应用
机械特性作为一种重要的物理特性,对肿瘤的发生、发展和转移有着重要影响。调节肿瘤的机械特性以提高其对放疗和化疗的敏感性已成为癌症治疗领域的一项重要策略。过去几十年来,纳米材料在癌症治疗方面取得了显著进展,无论是基于其固有特性还是作为药物输送载体。然而,目前对纳米材料在肿瘤治疗中的机械调节作用的研究还处于起步阶段。纳米材料本身的力学特性、药物载体的靶向性以及对肿瘤组织力学环境的调控对药物的有效吸收和临床肿瘤治疗具有深远的影响。因此,本综述旨在全面总结基于力学性能调控的纳米材料在肿瘤治疗中的应用和研究进展,为该领域的进一步研究和治疗策略的制定提供有力支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
CD56-targeted in vivo genetic engineering of natural killer cells mediates immunotherapy for acute myeloid leukemia. High Sensing Performance Hybrid Nanostructure Constructed via Nanoscale Confined Motion of Nanofiber and Nanoplatelet in Flexible Nanocomposite Sensor Nanoscopic visualization of microgel-immobilized cytochrome P450 enzymes and their local activity Metamagnetic transition and meta-stable magnetic state in Co-dopedFe3GaTe2 Perspectives on sustainable and efficient routes of nanoparticle synthesis: an exhaustive review on conventional and microplasma-assisted techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1