Recent Progress in Development of Functionalized Lignin Towards Sustainable Applications

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL Journal of Polymers and the Environment Pub Date : 2024-06-18 DOI:10.1007/s10924-024-03338-x
Mohamad Nurul Azman Mohammad Taib, Mohammad Mizanur Rahman, Jost Ruwoldt, I. Wayan Arnata, Dewi Sartika, Tawfik A. Salleh, M. Hazwan Hussin
{"title":"Recent Progress in Development of Functionalized Lignin Towards Sustainable Applications","authors":"Mohamad Nurul Azman Mohammad Taib,&nbsp;Mohammad Mizanur Rahman,&nbsp;Jost Ruwoldt,&nbsp;I. Wayan Arnata,&nbsp;Dewi Sartika,&nbsp;Tawfik A. Salleh,&nbsp;M. Hazwan Hussin","doi":"10.1007/s10924-024-03338-x","DOIUrl":null,"url":null,"abstract":"<div><p>Lignin is classified as the second most abundantly available biopolymer after cellulose and as a main aromatic resource material. Lignin structure differs based on sources of origin and species of biomass with around 15–40% of lignin content based on dry weight. It is extracted from various types of lignocellulosic biomass through different pulping extraction methods. After extraction, lignin can be further functionalized through different chemical reactions to meet the requirements and specifications before being used in end products. Therefore, in this review paper, the details on extraction and the type of lignin, as well as chemical functionalization, are discussed. The chemical functionalization can be used to modify the lignin such through phenolic depolymerization or by other aromatic compounds, creating novel chemical active sites to impact a reactivity of lignin and through functionalization of hydroxyl functional group for enhancing its reactivity. Furthermore, the recent sustainable application of lignin was discussed in different fields such as nanocomposite, flame retardant, antioxidant, cosmetic, natural binder and emulsifier. This review hence provides a summary of the current stateoftheart in lignin technology and future outlook of potential application areas.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 11","pages":"5423 - 5467"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03338-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lignin is classified as the second most abundantly available biopolymer after cellulose and as a main aromatic resource material. Lignin structure differs based on sources of origin and species of biomass with around 15–40% of lignin content based on dry weight. It is extracted from various types of lignocellulosic biomass through different pulping extraction methods. After extraction, lignin can be further functionalized through different chemical reactions to meet the requirements and specifications before being used in end products. Therefore, in this review paper, the details on extraction and the type of lignin, as well as chemical functionalization, are discussed. The chemical functionalization can be used to modify the lignin such through phenolic depolymerization or by other aromatic compounds, creating novel chemical active sites to impact a reactivity of lignin and through functionalization of hydroxyl functional group for enhancing its reactivity. Furthermore, the recent sustainable application of lignin was discussed in different fields such as nanocomposite, flame retardant, antioxidant, cosmetic, natural binder and emulsifier. This review hence provides a summary of the current stateoftheart in lignin technology and future outlook of potential application areas.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发功能化木质素以实现可持续应用的最新进展
木质素是仅次于纤维素的第二大生物聚合物,也是一种主要的芳香资源材料。木质素的结构因生物质的来源和种类而异,按干重计算,木质素含量约为 15-40%。木质素可通过不同的制浆提取方法从各类木质纤维素生物质中提取出来。提取后,木质素可通过不同的化学反应进一步功能化,以满足最终产品的要求和规格。因此,本文将详细讨论木质素的提取和类型以及化学功能化。化学功能化可通过酚类解聚或其他芳香族化合物对木质素进行改性,创造新的化学活性位点以影响木质素的反应性,并通过羟基官能团的功能化提高木质素的反应性。此外,还讨论了木质素最近在纳米复合材料、阻燃剂、抗氧化剂、化妆品、天然粘合剂和乳化剂等不同领域的可持续应用。因此,本综述概述了木质素技术的现状以及潜在应用领域的未来展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
期刊最新文献
Graphene Derivatives Functionalized Polycaprolactone/Gelatin Electrospun Nanofibrous Membrane Through Mussel-Inspired Polydopamine: Multifunctional Scaffold with High Potential for Nerve Tissue Engineering Volatile Compounds and Off-odors Analysis of Recycled PLA for Packaging Applications: An Essential Factor for Ensuring Food Safety and Quality Construction of Magnetic Ag3PO4/Fe3O4/Chitosan Polymer Composite with Enhanced Visible-light-driven Photocatalytic Activity for the Methylene Blue Dye Degradation Degradation of Cationic Polyacrylamide Flocculants upon Contact with Metal Surfaces During Rheological Measurements Green Synthesis of Silver Nanoparticles Using Cyto-compatible Polymer Derivative of Tara Gum for Gold (III) ion Detection in Water Samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1