Biomimetic Metal–Organic Framework Gated Nanoplatform for Sonodynamic Therapy against Extensively Drug Resistant Bacterial Lung Infection

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-07-04 DOI:10.1002/advs.202402473
Jianling Huang, Xiuwen Hong, Sixi Chen, Yucong He, Lixu Xie, Fenglin Gao, Chenghua Zhu, Xiao Jin, Haihao Yan, Yongxia Ye, Mingyue Shao, Xingran Du, Ganzhu Feng
{"title":"Biomimetic Metal–Organic Framework Gated Nanoplatform for Sonodynamic Therapy against Extensively Drug Resistant Bacterial Lung Infection","authors":"Jianling Huang,&nbsp;Xiuwen Hong,&nbsp;Sixi Chen,&nbsp;Yucong He,&nbsp;Lixu Xie,&nbsp;Fenglin Gao,&nbsp;Chenghua Zhu,&nbsp;Xiao Jin,&nbsp;Haihao Yan,&nbsp;Yongxia Ye,&nbsp;Mingyue Shao,&nbsp;Xingran Du,&nbsp;Ganzhu Feng","doi":"10.1002/advs.202402473","DOIUrl":null,"url":null,"abstract":"<p>Novel antimicrobial strategies are urgently needed to treat extensively drug-resistant (XDR) bacterial infections due to the high mortality rate and lack of effective therapeutic agents. Herein, nanoengineered human umbilical cord mesenchymal stem cells (hUC-MSCs), named PMZMU, are designed as a sonosensitizer for synergistic sonodynamic-nano-antimicrobial therapy against gram-negative XDR bacteria. PMZMU is composed of a bacterial targeting peptide (UBI<sub>29-41</sub>) modified hUC-MSCs membrane (MSCm), a sonosensitizer meso-tetra(4-car-boxyphenyl) porphine doped mesoporous organo-silica nanoparticle and an acidity-responsive metal–organic framework ZIF-8. This innovative formulation enables efficient loading of polymyxin B, reduces off-target drug release, increases circulation and targeting efficacy, and generates reactive oxygen species upon ultrasound irradiation. PMZMU exhibits remarkable in vitro inhibitory activity against four XDR bacteria: <i>Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa</i> (PA), and <i>Escherichia coli</i>. Taking advantage of the bacterial targeting ability of UBI<sub>29-41</sub> and the inflammatory chemotaxis of hUC-MSC, PMZMU can be precisely delivered to lung infection sites thereby augmenting polymyxin B concentration. PMZMU-mediated sonodynamic therapy significantly reduces bacterial burden, relieves inflammatory damage by promoting the polarization of macrophages toward M<sub>2</sub> phenotype, and improves survival rates without introducing adverse events. Overall, this study offers promising strategies for treating deep-tissue XDR bacterial infections, and guides the design and optimization of biomimetic nanomedicine.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202402473","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202402473","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Novel antimicrobial strategies are urgently needed to treat extensively drug-resistant (XDR) bacterial infections due to the high mortality rate and lack of effective therapeutic agents. Herein, nanoengineered human umbilical cord mesenchymal stem cells (hUC-MSCs), named PMZMU, are designed as a sonosensitizer for synergistic sonodynamic-nano-antimicrobial therapy against gram-negative XDR bacteria. PMZMU is composed of a bacterial targeting peptide (UBI29-41) modified hUC-MSCs membrane (MSCm), a sonosensitizer meso-tetra(4-car-boxyphenyl) porphine doped mesoporous organo-silica nanoparticle and an acidity-responsive metal–organic framework ZIF-8. This innovative formulation enables efficient loading of polymyxin B, reduces off-target drug release, increases circulation and targeting efficacy, and generates reactive oxygen species upon ultrasound irradiation. PMZMU exhibits remarkable in vitro inhibitory activity against four XDR bacteria: Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa (PA), and Escherichia coli. Taking advantage of the bacterial targeting ability of UBI29-41 and the inflammatory chemotaxis of hUC-MSC, PMZMU can be precisely delivered to lung infection sites thereby augmenting polymyxin B concentration. PMZMU-mediated sonodynamic therapy significantly reduces bacterial burden, relieves inflammatory damage by promoting the polarization of macrophages toward M2 phenotype, and improves survival rates without introducing adverse events. Overall, this study offers promising strategies for treating deep-tissue XDR bacterial infections, and guides the design and optimization of biomimetic nanomedicine.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对广泛耐药细菌肺部感染的声动力疗法的仿生金属有机框架门控纳米平台
由于广泛耐药(XDR)细菌感染死亡率高且缺乏有效的治疗药物,因此迫切需要新型抗菌策略来治疗这种感染。本文将纳米工程人脐带间充质干细胞(hUC-MSCs)命名为PMZMU,并将其设计为一种声敏剂,用于针对革兰氏阴性XDR细菌的声动力-纳米抗菌协同疗法。PMZMU 由细菌靶向肽(UBI29-41)修饰的 hUC 间充质干细胞膜(MSCm)、掺杂介孔有机硅纳米粒子的声敏剂介四(4-羧基苯基)卟吩和酸响应金属有机框架 ZIF-8 组成。这种创新配方能有效负载多粘菌素 B,减少脱靶药物释放,增加循环和靶向效力,并在超声照射时产生活性氧。PMZMU 对四种 XDR 细菌具有显著的体外抑制活性:肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌(PA)和大肠埃希菌。利用 UBI29-41 的细菌靶向能力和 hUC-MSC 的炎症趋化性,PMZMU 可被精确输送到肺部感染部位,从而提高多粘菌素 B 的浓度。PMZMU 介导的声动力疗法可显著减少细菌负荷,通过促进巨噬细胞向 M2 表型极化来缓解炎症损伤,并在不引起不良反应的情况下提高存活率。总之,这项研究为治疗深部组织 XDR 细菌感染提供了前景广阔的策略,并为生物仿生纳米药物的设计和优化提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
A CC-NB-ARC-LRR Gene Regulates Bract Morphology in Cotton. From Small Data Modeling to Large Language Model Screening: A Dual-Strategy Framework for Materials Intelligent Design. Genome-Wide Profiling of H3K27ac Identifies TDO2 as a Pivotal Therapeutic Target in Metabolic Associated Steatohepatitis Liver Disease. Surface Optimization of Noble-Metal-Free Conductive [Mn1/4Co1/2Ni1/4]O2 Nanosheets for Boosting Their Efficacy as Hybridization Matrices. The eATP/P2×7R Axis Drives Quantum Dot-Nanoparticle Induced Neutrophil Recruitment in the Pulmonary Microcirculation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1