Ultrafast Super-Resolution Imaging Exploiting Spontaneous Blinking of Static Excimer Aggregates.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-07-03 DOI:10.1021/jacs.4c01084
Cong Li, Xiaodong Xie, Mingqiang Li, Haozhi Wang, Xinyi Cheng, Jichao Zhang, Qian Li, Jiang Li, Xiaolei Zuo, Chunhai Fan, Jianlei Shen
{"title":"Ultrafast Super-Resolution Imaging Exploiting Spontaneous Blinking of Static Excimer Aggregates.","authors":"Cong Li, Xiaodong Xie, Mingqiang Li, Haozhi Wang, Xinyi Cheng, Jichao Zhang, Qian Li, Jiang Li, Xiaolei Zuo, Chunhai Fan, Jianlei Shen","doi":"10.1021/jacs.4c01084","DOIUrl":null,"url":null,"abstract":"<p><p>Single-molecule localization methods have been popularly exploited to obtain super-resolved images of biological structures. However, the low blinking frequency of randomly switching emission states of individual fluorophores greatly limits the imaging speed of single-molecule localization microscopy (SMLM). Here we present an ultrafast SMLM technique exploiting spontaneous fluorescence blinking of cyanine dye aggregates confined to DNA framework nanostructures. The DNA template guides the formation of static excimer aggregates as a \"light-harvesting nanoantenna\", whereas intermolecular excitation energy transfer (EET) between static excimers causes collective ultrafast fluorescence blinking of fluorophore aggregates. This DNA framework-based strategy enables the imaging of DNA nanostructures with 12.5-fold improvement in speed compared to conventional SMLM. Further, we demonstrate the use of this strategy to track the movement of super-resolved DNA nanostructures for over 20 min in a microfluidic system. Thus, this ultrafast SMLM holds great potential for revealing the dynamic processes of biomacromolecules in living cells.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c01084","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-molecule localization methods have been popularly exploited to obtain super-resolved images of biological structures. However, the low blinking frequency of randomly switching emission states of individual fluorophores greatly limits the imaging speed of single-molecule localization microscopy (SMLM). Here we present an ultrafast SMLM technique exploiting spontaneous fluorescence blinking of cyanine dye aggregates confined to DNA framework nanostructures. The DNA template guides the formation of static excimer aggregates as a "light-harvesting nanoantenna", whereas intermolecular excitation energy transfer (EET) between static excimers causes collective ultrafast fluorescence blinking of fluorophore aggregates. This DNA framework-based strategy enables the imaging of DNA nanostructures with 12.5-fold improvement in speed compared to conventional SMLM. Further, we demonstrate the use of this strategy to track the movement of super-resolved DNA nanostructures for over 20 min in a microfluidic system. Thus, this ultrafast SMLM holds great potential for revealing the dynamic processes of biomacromolecules in living cells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用静态准分子聚合体的自发闪烁进行超快超分辨率成像。
单分子定位方法已被广泛用于获取生物结构的超分辨图像。然而,单个荧光团随机切换发射状态的低闪烁频率极大地限制了单分子定位显微镜(SMLM)的成像速度。在这里,我们提出了一种超快 SMLM 技术,它利用了局限在 DNA 框架纳米结构中的氰基染料聚集体的自发荧光闪烁。DNA 模板作为 "光收集纳米天线 "引导静态准分子聚集体的形成,而静态准分子之间的分子间激发能量转移(EET)会导致荧光团聚集体的集体超快荧光闪烁。与传统的 SMLM 相比,这种基于 DNA 框架的策略使 DNA 纳米结构的成像速度提高了 12.5 倍。此外,我们还展示了利用这种策略在微流体系统中跟踪超分辨 DNA 纳米结构运动 20 分钟以上的情况。因此,这种超快 SMLM 在揭示活细胞中生物大分子的动态过程方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Beyond the First Coordination Sphere─Manipulating the Excited-State Landscape in Iron(II) Chromophores with Protons. Detection of a Kinetically Competent Compound-I Intermediate in the Vancomycin Biosynthetic Enzyme OxyB. Direct Probe of Conical Intersection Photochemistry by Time-Resolved X-ray Magnetic Circular Dichroism. Efficient Capture and Release of the Rare-Earth Element Neodymium in Aqueous Solution by Recyclable Covalent Organic Frameworks. Mechanistic Insight into the Thermal "Blueing" of Cyanine Dyes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1