{"title":"The sensitivity of HIV-1 gp120 polymorphs to inhibition by temsavir correlates to temsavir binding on-rate","authors":"","doi":"10.1016/j.antiviral.2024.105953","DOIUrl":null,"url":null,"abstract":"<div><p>Temsavir binds directly to the HIV-1 envelope glycoprotein gp120 and selectively inhibits interactions between HIV-1 and CD4 receptors. Previous studies identified gp120 amino acid positions where substitutions are associated with reduced susceptibility to temsavir. The mechanism by which temsavir susceptibility is altered in these envelope glycoproteins was evaluated. Pseudoviruses encoding gp120 substitutions alone (S375H/I/M/N, M426L, M434I, M475I) or in combination (S375H + M475I) were engineered on a wild-type JRFL background. Temsavir-gp120 and CD4-gp120 binding kinetics and ability of temsavir to block CD4-gp120 binding were evaluated using the purified polymorphic gp120 proteins and a Creoptix® WAVE Delta grating-coupled interferometry system. Fold-change in half-maximal inhibitory concentration (IC<sub>50</sub>) in JRFL-based pseudoviruses containing the aforementioned polymorphisms relative to that of wild-type ranged from 4-fold to 29,726-fold, while temsavir binding affinity for the polymorphic gp120 proteins varied from 0.7-fold to 73.7-fold relative to wild-type gp120. Strong correlations between temsavir IC<sub>50</sub> and temsavir binding affinity (<em>r</em> = 0.7332; <em>P</em> = 0.0246) as well as temsavir binding on-rate (<em>r</em> = −0.8940; <em>P</em> = 0.0011) were observed. Binding affinity of gp120 proteins for CD4 varied between 0.4-fold and 3.1-fold compared with wild-type gp120; no correlations between temsavir IC<sub>50</sub> and CD4 binding kinetic parameters were observed. For all polymorphic gp120 proteins, temsavir was able to fully block CD4 binding; 3 polymorphs required higher temsavir concentrations. Loss of susceptibility to temsavir observed for gp120 polymorphisms strongly correlated with reductions in temsavir binding on-rate. Nonetheless, temsavir retained the ability to fully block CD4-gp120 engagement given sufficiently high concentrations.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"229 ","pages":"Article 105953"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354224001621","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Temsavir binds directly to the HIV-1 envelope glycoprotein gp120 and selectively inhibits interactions between HIV-1 and CD4 receptors. Previous studies identified gp120 amino acid positions where substitutions are associated with reduced susceptibility to temsavir. The mechanism by which temsavir susceptibility is altered in these envelope glycoproteins was evaluated. Pseudoviruses encoding gp120 substitutions alone (S375H/I/M/N, M426L, M434I, M475I) or in combination (S375H + M475I) were engineered on a wild-type JRFL background. Temsavir-gp120 and CD4-gp120 binding kinetics and ability of temsavir to block CD4-gp120 binding were evaluated using the purified polymorphic gp120 proteins and a Creoptix® WAVE Delta grating-coupled interferometry system. Fold-change in half-maximal inhibitory concentration (IC50) in JRFL-based pseudoviruses containing the aforementioned polymorphisms relative to that of wild-type ranged from 4-fold to 29,726-fold, while temsavir binding affinity for the polymorphic gp120 proteins varied from 0.7-fold to 73.7-fold relative to wild-type gp120. Strong correlations between temsavir IC50 and temsavir binding affinity (r = 0.7332; P = 0.0246) as well as temsavir binding on-rate (r = −0.8940; P = 0.0011) were observed. Binding affinity of gp120 proteins for CD4 varied between 0.4-fold and 3.1-fold compared with wild-type gp120; no correlations between temsavir IC50 and CD4 binding kinetic parameters were observed. For all polymorphic gp120 proteins, temsavir was able to fully block CD4 binding; 3 polymorphs required higher temsavir concentrations. Loss of susceptibility to temsavir observed for gp120 polymorphisms strongly correlated with reductions in temsavir binding on-rate. Nonetheless, temsavir retained the ability to fully block CD4-gp120 engagement given sufficiently high concentrations.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.