Beneficial effect of GABA-producing Lactiplantibacillus strain LPB145 isolated from cheese starters evaluated in anxiety- and depression-like behaviours in rats.
J Lozano, S Fabius, S Fernández-Ciganda, J Urbanavicius, C Piccini, C Scorza, P Zunino
{"title":"Beneficial effect of GABA-producing Lactiplantibacillus strain LPB145 isolated from cheese starters evaluated in anxiety- and depression-like behaviours in rats.","authors":"J Lozano, S Fabius, S Fernández-Ciganda, J Urbanavicius, C Piccini, C Scorza, P Zunino","doi":"10.1163/18762891-bja00024","DOIUrl":null,"url":null,"abstract":"<p><p>In a previous study, we reported the in vitro potential probiotic and gamma-aminobutyric acid (GABA) production, of several strains from a collection of Lactiplantibacillus (Lpb) strains within the community of natural whey starters from the artisanal cheese industry. GABA is a non-protein amino acid widely distributed in nature and produced in animals, plants, and microorganisms. However, the best known role of GABA is its function as the major inhibitory neurotransmitter of the central nervous system. Preclinical and clinical evidence suggests that the GABAergic system has a relevant role in mental health disorders, such as anxiety and major depression. The modulation of the GABAergic system has been suggested as a potential strategy for treatment, one such mechanism of modulation is the influence of the microbiota-gut-brain axis through probiotic treatments. The present study was designed to investigate the in vivo probiotic potential of LPB145, a Lactiplantibacillus strain previously characterised as a GABA-producing potentially probiotic strain. Therefore, we evaluated the behavioural effects of chronic oral administration of LPB145 on rats' anxiety- and depression-like behaviours, using the elevated plus maze, open field, and the forced swimming test. The impact of LPB145 strain treatment on the gut microbiota structure and diversity was assessed to discern a possible mechanism of action of the LPB145 treatment through the microbiota-gut-brain axis. Our results showed that LPB145 administration induced an antidepressive-like behaviour without changes in locomotor activity. In contrast, the treatment did not modify the experimental anxiety. The structure and diversity of the intestinal microbiota remained unaffected by the treatment when compared to the control. However, specific clades that could be implicated in the behavioural changes did show differences in their relative abundance. These findings provide evidence regarding the potential of probiotic strains isolated from alimentary sources, to modulate the microbiota-gut-brain axis and positively impact mental health.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"465-479"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In a previous study, we reported the in vitro potential probiotic and gamma-aminobutyric acid (GABA) production, of several strains from a collection of Lactiplantibacillus (Lpb) strains within the community of natural whey starters from the artisanal cheese industry. GABA is a non-protein amino acid widely distributed in nature and produced in animals, plants, and microorganisms. However, the best known role of GABA is its function as the major inhibitory neurotransmitter of the central nervous system. Preclinical and clinical evidence suggests that the GABAergic system has a relevant role in mental health disorders, such as anxiety and major depression. The modulation of the GABAergic system has been suggested as a potential strategy for treatment, one such mechanism of modulation is the influence of the microbiota-gut-brain axis through probiotic treatments. The present study was designed to investigate the in vivo probiotic potential of LPB145, a Lactiplantibacillus strain previously characterised as a GABA-producing potentially probiotic strain. Therefore, we evaluated the behavioural effects of chronic oral administration of LPB145 on rats' anxiety- and depression-like behaviours, using the elevated plus maze, open field, and the forced swimming test. The impact of LPB145 strain treatment on the gut microbiota structure and diversity was assessed to discern a possible mechanism of action of the LPB145 treatment through the microbiota-gut-brain axis. Our results showed that LPB145 administration induced an antidepressive-like behaviour without changes in locomotor activity. In contrast, the treatment did not modify the experimental anxiety. The structure and diversity of the intestinal microbiota remained unaffected by the treatment when compared to the control. However, specific clades that could be implicated in the behavioural changes did show differences in their relative abundance. These findings provide evidence regarding the potential of probiotic strains isolated from alimentary sources, to modulate the microbiota-gut-brain axis and positively impact mental health.
期刊介绍:
Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators.
The journal will have five major sections:
* Food, nutrition and health
* Animal nutrition
* Processing and application
* Regulatory & safety aspects
* Medical & health applications
In these sections, topics dealt with by Beneficial Microbes include:
* Worldwide safety and regulatory issues
* Human and animal nutrition and health effects
* Latest discoveries in mechanistic studies and screening methods to unravel mode of action
* Host physiology related to allergy, inflammation, obesity, etc.
* Trends in application of (meta)genomics, proteomics and metabolomics
* New developments in how processing optimizes pro- & prebiotics for application
* Bacterial physiology related to health benefits