AnglesRefine: Refinement of 3D Protein Structures Using Transformer Based on Torsion Angles.

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS IEEE/ACM Transactions on Computational Biology and Bioinformatics Pub Date : 2024-07-03 DOI:10.1109/TCBB.2024.3422288
Lei Zhang, Junyong Zhu, Sheng Wang, Jie Hou, Dong Si, Renzhi Cao
{"title":"AnglesRefine: Refinement of 3D Protein Structures Using Transformer Based on Torsion Angles.","authors":"Lei Zhang, Junyong Zhu, Sheng Wang, Jie Hou, Dong Si, Renzhi Cao","doi":"10.1109/TCBB.2024.3422288","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of protein structure refinement is to enhance the precision of predicted protein models, particularly at the residue level of the local structure. Existing refinement approaches primarily rely on physics, whereas molecular simulation methods are resource-intensive and time-consuming. In this study, we employ deep learning methods to extract structural constraints from protein structure residues to assist in protein structure refinement. We introduce a novel method, AnglesRefine, which focuses on a protein's secondary structure and employs transformer to refine various protein structure angles (psi, phi, omega, CA_C_N_angle, C_N_CA_angle, N_CA_C_angle), ultimately generating a superior protein model based on the refined angles. We evaluate our approach against other cutting-edge methods using the CASP11-14 and CASP15 datasets. Experimental outcomes indicate that our method generally surpasses other techniques on the CASP11-14 test dataset, while performing comparably or marginally better on the CASP15 test dataset. Our method consistently demonstrates the least likelihood of model quality degradation, e.g., the degradation percentage of our method is less than 10%, while other methods are about 50%. Furthermore, as our approach eliminates the need for conformational search and sampling, it significantly reduces computational time compared to existing refinement methods.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3422288","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of protein structure refinement is to enhance the precision of predicted protein models, particularly at the residue level of the local structure. Existing refinement approaches primarily rely on physics, whereas molecular simulation methods are resource-intensive and time-consuming. In this study, we employ deep learning methods to extract structural constraints from protein structure residues to assist in protein structure refinement. We introduce a novel method, AnglesRefine, which focuses on a protein's secondary structure and employs transformer to refine various protein structure angles (psi, phi, omega, CA_C_N_angle, C_N_CA_angle, N_CA_C_angle), ultimately generating a superior protein model based on the refined angles. We evaluate our approach against other cutting-edge methods using the CASP11-14 and CASP15 datasets. Experimental outcomes indicate that our method generally surpasses other techniques on the CASP11-14 test dataset, while performing comparably or marginally better on the CASP15 test dataset. Our method consistently demonstrates the least likelihood of model quality degradation, e.g., the degradation percentage of our method is less than 10%, while other methods are about 50%. Furthermore, as our approach eliminates the need for conformational search and sampling, it significantly reduces computational time compared to existing refinement methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AnglesRefine:利用基于扭转角的变换器完善三维蛋白质结构
蛋白质结构精细化的目标是提高预测蛋白质模型的精度,尤其是在局部结构的残基水平上。现有的细化方法主要依赖物理学,而分子模拟方法则需要大量资源和时间。在本研究中,我们采用深度学习方法从蛋白质结构残基中提取结构约束,以协助蛋白质结构的细化。我们引入了一种新方法--AnglesRefine,该方法专注于蛋白质的二级结构,并利用变换器来细化各种蛋白质结构角度(psi、phi、ω、CA_C_N_angle、C_N_CA_angle、N_CA_C_angle),最终根据细化后的角度生成优秀的蛋白质模型。我们利用 CASP11-14 和 CASP15 数据集对我们的方法与其他先进方法进行了评估。实验结果表明,在 CASP11-14 测试数据集上,我们的方法总体上超越了其他技术,而在 CASP15 测试数据集上,我们的方法表现相当或略胜一筹。我们的方法始终是模型质量退化可能性最小的方法,例如,我们的方法的退化百分比低于 10%,而其他方法的退化百分比约为 50%。此外,由于我们的方法无需进行构象搜索和采样,因此与现有的完善方法相比,大大缩短了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
期刊最新文献
DeepLigType: Predicting Ligand Types of Protein-Ligand Binding Sites Using a Deep Learning Model. Performance Comparison between Deep Neural Network and Machine Learning based Classifiers for Huntington Disease Prediction from Human DNA Sequence. AI-based Computational Methods in Early Drug Discovery and Post Market Drug Assessment: A Survey. Enhancing Single-Cell RNA-seq Data Completeness with a Graph Learning Framework. circ2DGNN: circRNA-disease Association Prediction via Transformer-based Graph Neural Network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1