Martina Pitolli, Marta Cela, Delphine Kapps, Johana Chicher, Laurence Despons, Magali Frugier
{"title":"Comparative proteomics uncovers low asparagine content in Plasmodium tRip-KO proteins.","authors":"Martina Pitolli, Marta Cela, Delphine Kapps, Johana Chicher, Laurence Despons, Magali Frugier","doi":"10.1002/iub.2891","DOIUrl":null,"url":null,"abstract":"<p><p>tRNAs are not only essential for decoding the genetic code, but their abundance also has a strong impact on the rate of protein production, folding, and on the stability of the translated messenger RNAs. Plasmodium expresses a unique surface protein called tRip, involved in the import of exogenous tRNAs into the parasite. Comparative proteomic analysis of the blood stage of wild-type and tRip-KO variant of P. berghei parasites revealed that downregulated proteins in the mutant parasite are distinguished by a bias in their asparagine content. Furthermore, the demonstration of the possibility of charging host tRNAs with Plasmodium aminoacyl-tRNA synthetases led us to propose that imported host tRNAs participate in parasite protein synthesis. These results also suggest a novel mechanism of translational control in which import of host tRNAs emerge as regulators of gene expression in the Plasmodium developmental cycle and pathogenesis, by enabling the synthesis of asparagine-rich regulatory proteins that efficiently and selectively control the parasite infectivity.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUBMB Life","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/iub.2891","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
tRNAs are not only essential for decoding the genetic code, but their abundance also has a strong impact on the rate of protein production, folding, and on the stability of the translated messenger RNAs. Plasmodium expresses a unique surface protein called tRip, involved in the import of exogenous tRNAs into the parasite. Comparative proteomic analysis of the blood stage of wild-type and tRip-KO variant of P. berghei parasites revealed that downregulated proteins in the mutant parasite are distinguished by a bias in their asparagine content. Furthermore, the demonstration of the possibility of charging host tRNAs with Plasmodium aminoacyl-tRNA synthetases led us to propose that imported host tRNAs participate in parasite protein synthesis. These results also suggest a novel mechanism of translational control in which import of host tRNAs emerge as regulators of gene expression in the Plasmodium developmental cycle and pathogenesis, by enabling the synthesis of asparagine-rich regulatory proteins that efficiently and selectively control the parasite infectivity.
期刊介绍:
IUBMB Life is the flagship journal of the International Union of Biochemistry and Molecular Biology and is devoted to the rapid publication of the most novel and significant original research articles, reviews, and hypotheses in the broadly defined fields of biochemistry, molecular biology, cell biology, and molecular medicine.