{"title":"Prediction of chromosomal abnormalities in the screening of the first trimester of pregnancy using machine learning methods: a study protocol.","authors":"Mahla Shaban, Sanaz Mollazadeh, Saeid Eslami, Fatemeh Tara, Samaneh Sharif, Fatemeh Erfanian Arghavanian","doi":"10.1186/s12978-024-01839-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>For women in the first trimester, amniocentesis or chorionic villus sampling is recommended for screening. Machine learning has shown increased accuracy over time and finds numerous applications in enhancing decision-making, patient care, and service quality in nursing and midwifery. This study aims to develop an optimal learning model utilizing machine learning techniques, particularly neural networks, to predict chromosomal abnormalities and evaluate their predictive efficacy.</p><p><strong>Methods/ design: </strong>This cross-sectional study will be conducted in midwifery clinics in Mashhad, Iran in 2024. The data will be collected from 350 pregnant women in the high-risk group who underwent screening tests in the first trimester (between 11-14 weeks) of pregnancy. Information collected includes maternal age, BMI, smoking habits, history of trisomy 21 and other chromosomal disorders, CRL and NT levels, PAPP-A and B-HCG levels, presence of insulin-dependent diabetes, and whether the pregnancy resulted from IVF. The study follows up with the women during their clinic visits and tracks the results of amniocentesis. Sampling is based on Convenience Sampling, and data is gathered using a checklist of characteristics and screening/amniocentesis results. After preprocessing, feature extraction is conducted to identify and predict relevant features. The model is trained and evaluated using K-fold cross-validation.</p><p><strong>Discussion: </strong>There is a growing interest in utilizing artificial intelligence methods, like machine learning and deep learning, in nursing and midwifery. This underscores the critical necessity for nurses and midwives to be well-versed in artificial intelligence methods and their healthcare applications. It can be beneficial to develop a machine learning model, specifically focusing on neural networks, for predicting chromosomal abnormalities.</p><p><strong>Ethical code: </strong>IR.MUMS.NURSE.REC. 1402.134.</p>","PeriodicalId":20899,"journal":{"name":"Reproductive Health","volume":"21 1","pages":"101"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220987/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12978-024-01839-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: For women in the first trimester, amniocentesis or chorionic villus sampling is recommended for screening. Machine learning has shown increased accuracy over time and finds numerous applications in enhancing decision-making, patient care, and service quality in nursing and midwifery. This study aims to develop an optimal learning model utilizing machine learning techniques, particularly neural networks, to predict chromosomal abnormalities and evaluate their predictive efficacy.
Methods/ design: This cross-sectional study will be conducted in midwifery clinics in Mashhad, Iran in 2024. The data will be collected from 350 pregnant women in the high-risk group who underwent screening tests in the first trimester (between 11-14 weeks) of pregnancy. Information collected includes maternal age, BMI, smoking habits, history of trisomy 21 and other chromosomal disorders, CRL and NT levels, PAPP-A and B-HCG levels, presence of insulin-dependent diabetes, and whether the pregnancy resulted from IVF. The study follows up with the women during their clinic visits and tracks the results of amniocentesis. Sampling is based on Convenience Sampling, and data is gathered using a checklist of characteristics and screening/amniocentesis results. After preprocessing, feature extraction is conducted to identify and predict relevant features. The model is trained and evaluated using K-fold cross-validation.
Discussion: There is a growing interest in utilizing artificial intelligence methods, like machine learning and deep learning, in nursing and midwifery. This underscores the critical necessity for nurses and midwives to be well-versed in artificial intelligence methods and their healthcare applications. It can be beneficial to develop a machine learning model, specifically focusing on neural networks, for predicting chromosomal abnormalities.
期刊介绍:
Reproductive Health focuses on all aspects of human reproduction. The journal includes sections dedicated to adolescent health, female fertility and midwifery and all content is open access.
Reproductive health is defined as a state of physical, mental, and social well-being in all matters relating to the reproductive system, at all stages of life. Good reproductive health implies that people are able to have a satisfying and safe sex life, the capability to reproduce and the freedom to decide if, when, and how often to do so. Men and women should be informed about and have access to safe, effective, affordable, and acceptable methods of family planning of their choice, and the right to appropriate health-care services that enable women to safely go through pregnancy and childbirth.