Exploring the therapeutic potential of steroidal alkaloids in managing Alzheimer’s disease

IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Steroids Pub Date : 2024-07-02 DOI:10.1016/j.steroids.2024.109468
Pratima P. Pandey, Maushmi S. Kumar
{"title":"Exploring the therapeutic potential of steroidal alkaloids in managing Alzheimer’s disease","authors":"Pratima P. Pandey,&nbsp;Maushmi S. Kumar","doi":"10.1016/j.steroids.2024.109468","DOIUrl":null,"url":null,"abstract":"<div><p>Steroidal alkaloids are secondary metabolites that are often found in plants, fungi and sponges. These compounds are considered as a source of bioactive compounds for the treatment of chronic diseases, such as neurological disorder like Alzheimer’s disease (AD). Some examples of alkaloid derivatives currently used to treat AD symptoms include galantamine, huperzine A, and other alkaloids. AD is a multifactorial disease caused by multiple factors such as inflammation, oxidative stress, and protein aggregation. Based on the various important neuroprotective activities and different pharmacological effects of steroidal alkaloids with polypharmacological modulatory effects, they can lead to the development of new drugs for the treatment of AD. There are limited studies on the involvement of steroidal alkaloids in AD. Therefore, the mechanisms and neuroprotective abilities of these compounds are still poorly understood. The purpose of this review article is to provide an overview of the mechanism, toxicity and neuroprotective benefits of steroidal alkaloids and to discuss future possibilities to improve the application of steroidal alkaloids as anti-AD agents. The therapeutic value and limitations of the steroidal alkaloid are investigated to provide new perspectives for future clinical development studies.</p></div>","PeriodicalId":21997,"journal":{"name":"Steroids","volume":"209 ","pages":"Article 109468"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steroids","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039128X24001065","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Steroidal alkaloids are secondary metabolites that are often found in plants, fungi and sponges. These compounds are considered as a source of bioactive compounds for the treatment of chronic diseases, such as neurological disorder like Alzheimer’s disease (AD). Some examples of alkaloid derivatives currently used to treat AD symptoms include galantamine, huperzine A, and other alkaloids. AD is a multifactorial disease caused by multiple factors such as inflammation, oxidative stress, and protein aggregation. Based on the various important neuroprotective activities and different pharmacological effects of steroidal alkaloids with polypharmacological modulatory effects, they can lead to the development of new drugs for the treatment of AD. There are limited studies on the involvement of steroidal alkaloids in AD. Therefore, the mechanisms and neuroprotective abilities of these compounds are still poorly understood. The purpose of this review article is to provide an overview of the mechanism, toxicity and neuroprotective benefits of steroidal alkaloids and to discuss future possibilities to improve the application of steroidal alkaloids as anti-AD agents. The therapeutic value and limitations of the steroidal alkaloid are investigated to provide new perspectives for future clinical development studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索甾体生物碱治疗阿尔茨海默病的潜力。
甾体生物碱是次生代谢产物,通常存在于植物、真菌和海绵中。这些化合物被认为是治疗慢性疾病(如阿尔茨海默病(AD)等神经系统疾病)的生物活性化合物来源。目前用于治疗阿尔茨海默病症状的生物碱衍生物包括加兰他敏、石杉碱甲和其他生物碱。阿兹海默症是一种多因素疾病,由炎症、氧化应激和蛋白质聚集等多种因素引起。基于甾体生物碱具有多种重要的神经保护活性和不同的药理作用,具有多药理调节作用,可以开发出治疗AD的新药。关于甾体生物碱参与 AD 的研究还很有限。因此,人们对这些化合物的作用机制和神经保护能力仍知之甚少。这篇综述文章旨在概述甾体生物碱的机制、毒性和神经保护作用,并探讨未来改进甾体生物碱作为抗 AD 药物应用的可能性。通过研究甾体生物碱的治疗价值和局限性,为未来的临床开发研究提供新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Steroids
Steroids 医学-内分泌学与代谢
CiteScore
5.10
自引率
3.70%
发文量
120
审稿时长
73 days
期刊介绍: STEROIDS is an international research journal devoted to studies on all chemical and biological aspects of steroidal moieties. The journal focuses on both experimental and theoretical studies on the biology, chemistry, biosynthesis, metabolism, molecular biology, physiology and pharmacology of steroids and other molecules that target or regulate steroid receptors. Manuscripts presenting clinical research related to steroids, steroid drug development, comparative endocrinology of steroid hormones, investigations on the mechanism of steroid action and steroid chemistry are all appropriate for submission for peer review. STEROIDS publishes both original research and timely reviews. For details concerning the preparation of manuscripts see Instructions to Authors, which is published in each issue of the journal.
期刊最新文献
Cardioprotective effects of S-equol, a soybean metabolite with estrogen activity, and role of the PI3K/Akt pathway in a male rat model of ischemic reperfusion PTX3 impairs granulosa cell function by promoting the secretion of inflammatory cytokines in M1 macrophages via the JAK pathway. Editorial Board Comparison of a chemiluminescence immunoassay with LC–MS/MS in the determination of the plasma aldosterone concentration in patients with impaired renal function Unraveling the impact of semaglutide in a diabetic rat model of testicular dysfunction: Insights into spermatogenesis pathways and miRNA-148a-5p
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1