Multi-omics analysis reveals drivers of loss of β-cell function after newly diagnosed autoimmune type 1 diabetes: An INNODIA multicenter study

IF 4.6 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Diabetes/Metabolism Research and Reviews Pub Date : 2024-07-03 DOI:10.1002/dmrr.3833
Jose Juan Almagro Armenteros, Caroline Brorsson, Christian Holm Johansen, Karina Banasik, Gianluca Mazzoni, Robert Moulder, Karoliina Hirvonen, Tomi Suomi, Omid Rasool, Sylvaine F. A. Bruggraber, M. Loredana Marcovecchio, Emile Hendricks, Naba Al-Sari, Ismo Mattila, Cristina Legido-Quigley, Tommi Suvitaival, Piotr J. Chmura, Mikael Knip, Anke M. Schulte, Jeong Heon Lee, Guido Sebastiani, Giuseppina Emanuela Grieco, Laura L. Elo, Simranjeet Kaur, Flemming Pociot, Francesco Dotta, Tim Tree, Riitta Lahesmaa, Lut Overbergh, Chantal Mathieu, Mark Peakman, Søren Brunak, the INNODIA investigators
{"title":"Multi-omics analysis reveals drivers of loss of β-cell function after newly diagnosed autoimmune type 1 diabetes: An INNODIA multicenter study","authors":"Jose Juan Almagro Armenteros,&nbsp;Caroline Brorsson,&nbsp;Christian Holm Johansen,&nbsp;Karina Banasik,&nbsp;Gianluca Mazzoni,&nbsp;Robert Moulder,&nbsp;Karoliina Hirvonen,&nbsp;Tomi Suomi,&nbsp;Omid Rasool,&nbsp;Sylvaine F. A. Bruggraber,&nbsp;M. Loredana Marcovecchio,&nbsp;Emile Hendricks,&nbsp;Naba Al-Sari,&nbsp;Ismo Mattila,&nbsp;Cristina Legido-Quigley,&nbsp;Tommi Suvitaival,&nbsp;Piotr J. Chmura,&nbsp;Mikael Knip,&nbsp;Anke M. Schulte,&nbsp;Jeong Heon Lee,&nbsp;Guido Sebastiani,&nbsp;Giuseppina Emanuela Grieco,&nbsp;Laura L. Elo,&nbsp;Simranjeet Kaur,&nbsp;Flemming Pociot,&nbsp;Francesco Dotta,&nbsp;Tim Tree,&nbsp;Riitta Lahesmaa,&nbsp;Lut Overbergh,&nbsp;Chantal Mathieu,&nbsp;Mark Peakman,&nbsp;Søren Brunak,&nbsp;the INNODIA investigators","doi":"10.1002/dmrr.3833","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>Heterogeneity in the rate of <i>β</i>-cell loss in newly diagnosed type 1 diabetes patients is poorly understood and creates a barrier to designing and interpreting disease-modifying clinical trials. Integrative analyses of baseline multi-omics data obtained after the diagnosis of type 1 diabetes may provide mechanistic insight into the diverse rates of disease progression after type 1 diabetes diagnosis.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We collected samples in a pan-European consortium that enabled the concerted analysis of five different omics modalities in data from 97 newly diagnosed patients. In this study, we used Multi-Omics Factor Analysis to identify molecular signatures correlating with post-diagnosis decline in <i>β</i>-cell mass measured as fasting C-peptide.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Two molecular signatures were significantly correlated with fasting C-peptide levels. One signature showed a correlation to neutrophil degranulation, cytokine signalling, lymphoid and non-lymphoid cell interactions and G-protein coupled receptor signalling events that were inversely associated with a rapid decline in <i>β</i>-cell function. The second signature was related to translation and viral infection was inversely associated with change in <i>β</i>-cell function. In addition, the immunomics data revealed a Natural Killer cell signature associated with rapid <i>β</i>-cell decline.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Features that differ between individuals with slow and rapid decline in <i>β</i>-cell mass could be valuable in staging and prediction of the rate of disease progression and thus enable smarter (shorter and smaller) trial designs for disease modifying therapies as well as offering biomarkers of therapeutic effect.</p>\n </section>\n </div>","PeriodicalId":11335,"journal":{"name":"Diabetes/Metabolism Research and Reviews","volume":"40 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dmrr.3833","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes/Metabolism Research and Reviews","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dmrr.3833","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

Heterogeneity in the rate of β-cell loss in newly diagnosed type 1 diabetes patients is poorly understood and creates a barrier to designing and interpreting disease-modifying clinical trials. Integrative analyses of baseline multi-omics data obtained after the diagnosis of type 1 diabetes may provide mechanistic insight into the diverse rates of disease progression after type 1 diabetes diagnosis.

Methods

We collected samples in a pan-European consortium that enabled the concerted analysis of five different omics modalities in data from 97 newly diagnosed patients. In this study, we used Multi-Omics Factor Analysis to identify molecular signatures correlating with post-diagnosis decline in β-cell mass measured as fasting C-peptide.

Results

Two molecular signatures were significantly correlated with fasting C-peptide levels. One signature showed a correlation to neutrophil degranulation, cytokine signalling, lymphoid and non-lymphoid cell interactions and G-protein coupled receptor signalling events that were inversely associated with a rapid decline in β-cell function. The second signature was related to translation and viral infection was inversely associated with change in β-cell function. In addition, the immunomics data revealed a Natural Killer cell signature associated with rapid β-cell decline.

Conclusions

Features that differ between individuals with slow and rapid decline in β-cell mass could be valuable in staging and prediction of the rate of disease progression and thus enable smarter (shorter and smaller) trial designs for disease modifying therapies as well as offering biomarkers of therapeutic effect.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多组学分析揭示了新诊断的自身免疫性 1 型糖尿病患者β细胞功能丧失的驱动因素:INNODIA 多中心研究。
目的:人们对新诊断的1型糖尿病患者β细胞丢失率的异质性知之甚少,这给设计和解释疾病调整临床试验造成了障碍。对1型糖尿病确诊后获得的基线多组学数据进行综合分析,可从机理上深入了解1型糖尿病确诊后疾病进展的不同速度:我们在一个泛欧联盟中收集了样本,对来自 97 名新确诊患者的数据中的五种不同的组学模式进行了协同分析。在这项研究中,我们使用多指标因子分析来确定与诊断后以空腹 C 肽衡量的 β 细胞质量下降相关的分子特征:结果:两个分子特征与空腹 C 肽水平有明显相关性。其中一个特征与中性粒细胞脱颗粒、细胞因子信号、淋巴细胞和非淋巴细胞相互作用以及 G 蛋白偶联受体信号事件相关,这些事件与 β 细胞功能的快速下降成反比。第二个特征与翻译有关,病毒感染与β细胞功能的变化成反比。此外,免疫组学数据显示,自然杀伤细胞特征与β细胞功能快速下降有关:结论:β细胞数量缓慢下降和快速下降的个体之间的特征差异可能对疾病进展速度的分期和预测很有价值,从而使改变疾病疗法的试验设计更智能(更短、更小),并提供治疗效果的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Diabetes/Metabolism Research and Reviews
Diabetes/Metabolism Research and Reviews 医学-内分泌学与代谢
CiteScore
17.20
自引率
2.50%
发文量
84
审稿时长
4-8 weeks
期刊介绍: Diabetes/Metabolism Research and Reviews is a premier endocrinology and metabolism journal esteemed by clinicians and researchers alike. Encompassing a wide spectrum of topics including diabetes, endocrinology, metabolism, and obesity, the journal eagerly accepts submissions ranging from clinical studies to basic and translational research, as well as reviews exploring historical progress, controversial issues, and prominent opinions in the field. Join us in advancing knowledge and understanding in the realm of diabetes and metabolism.
期刊最新文献
Prediction Model for Polyneuropathy in Recent-Onset Diabetes Based on Serum Neurofilament Light Chain, Fibroblast Growth Factor-19 and Standard Anthropometric and Clinical Variables A New Quantitative Neuropad for Early Diagnosis of Diabetic Peripheral Neuropathy One in Five Atherosclerotic Cardiovascular Disease Events in Individuals With Diabetes Attributed to Elevated Remnant Cholesterol Performance of Continuous Glucose Monitoring System Among Patients With Acute Ischaemic Stroke Treated With Mechanical Thrombectomy Postprandial Plasma Glucose With a Fasting Time of 4–7.9 h Is Positively Associated With Cancer Mortality in US Adults
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1