Parisha Srivastava, Sukanya Bhoumik, Arun K Yadawa, Rashmi Kesherwani, Syed Ibrahim Rizvi
{"title":"Coenzyme Q<sub>10</sub> supplementation affects cellular ionic balance: relevance to aging.","authors":"Parisha Srivastava, Sukanya Bhoumik, Arun K Yadawa, Rashmi Kesherwani, Syed Ibrahim Rizvi","doi":"10.1515/znc-2024-0129","DOIUrl":null,"url":null,"abstract":"<p><p>Aging results into disruptive physiological functioning and cellular processes that affect the composition and structure of the plasma membrane. The plasma membrane is the major regulator of ionic homeostasis that regulates the functioning of membrane transporters and exchangers. Coenzyme Q<sub>10</sub> is a lipid-soluble antioxidant molecule that declines during aging and age-associated diseases. The present study aims to explore the role of Coenzyme Q<sub>10</sub> supplementation to rats during aging on membrane transporters and redox biomarkers. The study was conducted on young and old male Wistar rats supplemented with 20 mg/kg b.w. of Coenzyme Q<sub>10</sub> per day. After a period of 28 days, rats were sacrificed and erythrocyte membrane was isolated. The result exhibits significant decline in biomarkers of oxidative stress in old control rats when compared with young control. The effect of Coenzyme Q<sub>10</sub> supplementation was more pronounced in old rats. The functioning of membrane transporters and Na<sup>+</sup>/H<sup>+</sup> exchanger showed potential return to normal levels in the Coenzyme Q<sub>10</sub> treated rats. Overall, the results demonstrate that Coenzyme Q<sub>10</sub> plays an important role in maintaining redox balance in cells which interconnects with membrane integrity. Thus, Coenzyme Q<sub>10</sub> supplementation may play an important role in protecting age related alterations in erythrocyte membrane physiology.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/znc-2024-0129","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aging results into disruptive physiological functioning and cellular processes that affect the composition and structure of the plasma membrane. The plasma membrane is the major regulator of ionic homeostasis that regulates the functioning of membrane transporters and exchangers. Coenzyme Q10 is a lipid-soluble antioxidant molecule that declines during aging and age-associated diseases. The present study aims to explore the role of Coenzyme Q10 supplementation to rats during aging on membrane transporters and redox biomarkers. The study was conducted on young and old male Wistar rats supplemented with 20 mg/kg b.w. of Coenzyme Q10 per day. After a period of 28 days, rats were sacrificed and erythrocyte membrane was isolated. The result exhibits significant decline in biomarkers of oxidative stress in old control rats when compared with young control. The effect of Coenzyme Q10 supplementation was more pronounced in old rats. The functioning of membrane transporters and Na+/H+ exchanger showed potential return to normal levels in the Coenzyme Q10 treated rats. Overall, the results demonstrate that Coenzyme Q10 plays an important role in maintaining redox balance in cells which interconnects with membrane integrity. Thus, Coenzyme Q10 supplementation may play an important role in protecting age related alterations in erythrocyte membrane physiology.
期刊介绍:
A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal and a community resource for the emerging field of natural and natural-like products. The journal publishes original research on the isolation (including structure elucidation), bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and their biological activity and innovative developed computational methods for predicting the structure and/or function of natural products. A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) welcomes research papers in fields on the chemistry-biology boundary which address scientific ideas and approaches to generate and understand natural compounds on a molecular level and/or use them to stimulate and manipulate biological processes.