Parameter-Free Accelerated Gradient Descent for Nonconvex Minimization

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Optimization Pub Date : 2024-06-17 DOI:10.1137/22m1540934
Naoki Marumo, Akiko Takeda
{"title":"Parameter-Free Accelerated Gradient Descent for Nonconvex Minimization","authors":"Naoki Marumo, Akiko Takeda","doi":"10.1137/22m1540934","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 2093-2120, June 2024. <br/> Abstract. We propose a new first-order method for minimizing nonconvex functions with a Lipschitz continuous gradient and Hessian. The proposed method is an accelerated gradient descent with two restart mechanisms and finds a solution where the gradient norm is less than [math] in [math] function and gradient evaluations. Unlike existing first-order methods with similar complexity bounds, our algorithm is parameter-free because it requires no prior knowledge of problem-dependent parameters, e.g., the Lipschitz constants and the target accuracy [math]. The main challenge in achieving this advantage is estimating the Lipschitz constant of the Hessian using only first-order information. To this end, we develop a new Hessian-free analysis based on two technical inequalities: a Jensen-type inequality for gradients and an error bound for the trapezoidal rule. Several numerical results illustrate that the proposed method performs comparably to existing algorithms with similar complexity bounds, even without parameter tuning.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1540934","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 2, Page 2093-2120, June 2024.
Abstract. We propose a new first-order method for minimizing nonconvex functions with a Lipschitz continuous gradient and Hessian. The proposed method is an accelerated gradient descent with two restart mechanisms and finds a solution where the gradient norm is less than [math] in [math] function and gradient evaluations. Unlike existing first-order methods with similar complexity bounds, our algorithm is parameter-free because it requires no prior knowledge of problem-dependent parameters, e.g., the Lipschitz constants and the target accuracy [math]. The main challenge in achieving this advantage is estimating the Lipschitz constant of the Hessian using only first-order information. To this end, we develop a new Hessian-free analysis based on two technical inequalities: a Jensen-type inequality for gradients and an error bound for the trapezoidal rule. Several numerical results illustrate that the proposed method performs comparably to existing algorithms with similar complexity bounds, even without parameter tuning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于非凸最小化的无参数加速梯度下降算法
SIAM 优化期刊》,第 34 卷第 2 期,第 2093-2120 页,2024 年 6 月。 摘要。我们提出了一种新的一阶方法,用于最小化具有 Lipschitz 连续梯度和 Hessian 的非凸函数。所提出的方法是一种加速梯度下降法,具有两种重启机制,能在[math]函数和梯度评估中找到梯度规范小于[math]的解。与复杂度界限相似的现有一阶方法不同,我们的算法是无参数的,因为它不需要事先知道与问题相关的参数,如 Lipschitz 常量和目标精度[math]。实现这一优势的主要挑战在于仅使用一阶信息来估计赫塞斯的 Lipschitz 常量。为此,我们基于两个技术不等式:梯度的詹森式不等式和梯形法则的误差约束,开发了一种新的无 Hessian 分析方法。几个数值结果表明,即使不调整参数,所提出的方法也能与复杂度界限相似的现有算法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
期刊最新文献
Corrigendum and Addendum: Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates Minimum Spanning Trees in Infinite Graphs: Theory and Algorithms On Minimal Extended Representations of Generalized Power Cones A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1