LANDER: Visual Analysis of Activity and Uncertainty in Surveillance Video

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Human-Machine Systems Pub Date : 2024-06-24 DOI:10.1109/THMS.2024.3409722
Tong Li;Guodao Sun;Baofeng Chang;Yunchao Wang;Qi Jiang;Yuanzhong Ying;Li Jiang;Haixia Wang;Ronghua Liang
{"title":"LANDER: Visual Analysis of Activity and Uncertainty in Surveillance Video","authors":"Tong Li;Guodao Sun;Baofeng Chang;Yunchao Wang;Qi Jiang;Yuanzhong Ying;Li Jiang;Haixia Wang;Ronghua Liang","doi":"10.1109/THMS.2024.3409722","DOIUrl":null,"url":null,"abstract":"Vision algorithms face challenges of limited visual presentation and unreliability in pedestrian activity assessment. In this article, we introduce LANDER, an interactive analysis system for visual exploration of pedestrian activity and uncertainty in surveillance videos. This visual analytics system focuses on three common categories of uncertainties in object tracking and action recognition. LANDER offers an overview visualization of activity and uncertainty, along with spatio-temporal exploration views closely associated with the scene. Expert evaluation and user study indicate that LANDER outperforms traditional video exploration in data presentation and analysis workflow. Specifically, compared to the baseline method, it excels in reducing retrieval time (\n<inline-formula><tex-math>$p&lt; $</tex-math></inline-formula>\n 0.01), enhancing uncertainty identification (\n<inline-formula><tex-math>$p&lt; $</tex-math></inline-formula>\n 0.05), and improving the user experience (\n<inline-formula><tex-math>$p&lt; $</tex-math></inline-formula>\n 0.05).","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10570041/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Vision algorithms face challenges of limited visual presentation and unreliability in pedestrian activity assessment. In this article, we introduce LANDER, an interactive analysis system for visual exploration of pedestrian activity and uncertainty in surveillance videos. This visual analytics system focuses on three common categories of uncertainties in object tracking and action recognition. LANDER offers an overview visualization of activity and uncertainty, along with spatio-temporal exploration views closely associated with the scene. Expert evaluation and user study indicate that LANDER outperforms traditional video exploration in data presentation and analysis workflow. Specifically, compared to the baseline method, it excels in reducing retrieval time ( $p< $  0.01), enhancing uncertainty identification ( $p< $  0.05), and improving the user experience ( $p< $  0.05).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LANDER:对监控视频中的活动和不确定性进行可视化分析
视觉算法在行人活动评估中面临着视觉呈现有限和不可靠的挑战。在这篇文章中,我们介绍了 LANDER--一个用于对监控视频中的行人活动和不确定性进行可视化探索的交互式分析系统。该视觉分析系统重点关注物体跟踪和动作识别中常见的三类不确定性。LANDER 提供了活动和不确定性的概览可视化,以及与场景密切相关的时空探索视图。专家评估和用户研究表明,LANDER 在数据展示和分析工作流程方面优于传统的视频探索。具体而言,与基线方法相比,它在缩短检索时间($p< $0.01)、增强不确定性识别($p< $0.05)和改善用户体验($p< $0.05)方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Human-Machine Systems
IEEE Transactions on Human-Machine Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
7.10
自引率
11.10%
发文量
136
期刊介绍: The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.
期刊最新文献
Table of Contents Present a World of Opportunity IEEE Systems, Man, and Cybernetics Society Information IEEE Transactions on Human-Machine Systems Information for Authors TechRxiv: Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1