Emission characteristics and control technology of heavy metals during collaborative treatment of municipal solid waste incineration fly ash in iron ore sintering process
Xiao-hui Fan, Zhi-an Zhou, Bin-bin Huang, Zhi-yun Ji, Min Gan, Zeng-qing Sun, Xu-ling Chen, Xiao-xian Huang, Guo-jing Wang
{"title":"Emission characteristics and control technology of heavy metals during collaborative treatment of municipal solid waste incineration fly ash in iron ore sintering process","authors":"Xiao-hui Fan, Zhi-an Zhou, Bin-bin Huang, Zhi-yun Ji, Min Gan, Zeng-qing Sun, Xu-ling Chen, Xiao-xian Huang, Guo-jing Wang","doi":"10.1007/s42243-024-01269-4","DOIUrl":null,"url":null,"abstract":"<p>The municipal solid waste incineration fly ash (MSWI-FA) contains a large amount of heavy metals, and the process of iron ore sintering and treating fly ash needs to pay attention to the migration characteristics of heavy metals. The impact of the application of MSWI-FA in the sintering process on the emission law of heavy metals in the collaborative treatment process was studied, and corresponding control technologies were proposed. The results showed that the direct addition of water washing fly ash (WM-FA) powder resulted in varying degrees of increase in heavy metal elements in the sinter. As the amount of WM-FA added increases, the content of heavy metal elements correspondingly increases, and an appropriate amount of WM-FA added is 0.5%–1.0%. The migration mechanism of heavy metals during the sintering treatment of WM-FA was clarified. Heavy metals are mainly removed through direct and indirect chlorination reactions, and Cu and Cr can react with SiO<sub>2</sub> and Fe<sub>2</sub>O<sub>3</sub> in the sintered material to solidify in the sinter. Corresponding control techniques have been proposed to reduce the heavy metal elements in WM-FA through the pre-treatment of WM-FA. When the WM-FA was fed in the middle and lower layers of the sintered material, the high temperature of the lower layer was utilized to promote the removal of heavy metals. The Ni element content has decreased from 130 to 90 mg kg<sup>−1</sup>, and the Cd removal rate has increased by 23%. The removal rates of Cd and Cr elements increase by 2.4 and 5.5 times, respectively. There is no significant change in sintering indexes.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"11 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01269-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The municipal solid waste incineration fly ash (MSWI-FA) contains a large amount of heavy metals, and the process of iron ore sintering and treating fly ash needs to pay attention to the migration characteristics of heavy metals. The impact of the application of MSWI-FA in the sintering process on the emission law of heavy metals in the collaborative treatment process was studied, and corresponding control technologies were proposed. The results showed that the direct addition of water washing fly ash (WM-FA) powder resulted in varying degrees of increase in heavy metal elements in the sinter. As the amount of WM-FA added increases, the content of heavy metal elements correspondingly increases, and an appropriate amount of WM-FA added is 0.5%–1.0%. The migration mechanism of heavy metals during the sintering treatment of WM-FA was clarified. Heavy metals are mainly removed through direct and indirect chlorination reactions, and Cu and Cr can react with SiO2 and Fe2O3 in the sintered material to solidify in the sinter. Corresponding control techniques have been proposed to reduce the heavy metal elements in WM-FA through the pre-treatment of WM-FA. When the WM-FA was fed in the middle and lower layers of the sintered material, the high temperature of the lower layer was utilized to promote the removal of heavy metals. The Ni element content has decreased from 130 to 90 mg kg−1, and the Cd removal rate has increased by 23%. The removal rates of Cd and Cr elements increase by 2.4 and 5.5 times, respectively. There is no significant change in sintering indexes.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..