{"title":"Microstructure and mechanical properties of transient liquid phase bonding Ti3SiC2 ceramic to SUS430 steel using an Al interlayer","authors":"Jing-xiang Zhao, Xi-chao Li, Jing Shi, Qiang Cheng, Bin Xu, Ming-yue Sun, Li-li Zheng","doi":"10.1007/s42243-024-01265-8","DOIUrl":null,"url":null,"abstract":"<p>Ti<sub>3</sub>SiC<sub>2</sub> ceramic and SUS430 ferritic stainless steel were welded by the transient liquid phase (TLP) diffusion bonding method using an Al interlayer at 850–1050 °C in vacuum. The evolution of phase and morphology at the interface and bonding strength were systematically investigated. The results show that Ti<sub>3</sub>SiC<sub>2</sub> and SUS430 were well bonded at 900–950 °C. Three reaction zones were observed at the interface. At the joint interface area adjacent to alloy, the alloy completely reacted with liquid Al to form Al<sub>86</sub>Fe<sub>14</sub>. At Ti<sub>3</sub>SiC<sub>2</sub>/Al interface, Ti and Si diffused outward from Ti<sub>3</sub>SiC<sub>2</sub> into the molten Al to form Fe<sub>3</sub>Al + Al<sub>5</sub>FeSi + TiAl<sub>3</sub> zone. Adjacent to Ti<sub>3</sub>SiC<sub>2</sub> matrix, Ti<sub>3</sub>Si(Al)C<sub>2</sub> + TiC<sub><i>x</i></sub> zone was formed by the loss of Si. The evolution mechanism of TLP-bonded joints was discussed based on the interface microstructure and product phases. In addition, the tensile strength of the joint increased with increasing bonding temperature. The corresponding maximum value of 59.7 MPa was obtained from SUS430/Al (10 μm)/Ti<sub>3</sub>SiC<sub>2</sub> joint prepared at 950 °C.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"26 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01265-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ti3SiC2 ceramic and SUS430 ferritic stainless steel were welded by the transient liquid phase (TLP) diffusion bonding method using an Al interlayer at 850–1050 °C in vacuum. The evolution of phase and morphology at the interface and bonding strength were systematically investigated. The results show that Ti3SiC2 and SUS430 were well bonded at 900–950 °C. Three reaction zones were observed at the interface. At the joint interface area adjacent to alloy, the alloy completely reacted with liquid Al to form Al86Fe14. At Ti3SiC2/Al interface, Ti and Si diffused outward from Ti3SiC2 into the molten Al to form Fe3Al + Al5FeSi + TiAl3 zone. Adjacent to Ti3SiC2 matrix, Ti3Si(Al)C2 + TiCx zone was formed by the loss of Si. The evolution mechanism of TLP-bonded joints was discussed based on the interface microstructure and product phases. In addition, the tensile strength of the joint increased with increasing bonding temperature. The corresponding maximum value of 59.7 MPa was obtained from SUS430/Al (10 μm)/Ti3SiC2 joint prepared at 950 °C.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..