Effect of phase content on deformation compatibility in ferrite and bainite dual-phase steel: experimental and crystal plasticity finite element analysis
{"title":"Effect of phase content on deformation compatibility in ferrite and bainite dual-phase steel: experimental and crystal plasticity finite element analysis","authors":"Xian-bo Shi, Xing-yang Tu, Bing-chuan Yan, Yi Ren, Wei Yan, Yi-yin Shan","doi":"10.1007/s42243-024-01232-3","DOIUrl":null,"url":null,"abstract":"<p>The phase volume fraction has an important role in the match of the strength and plasticity of dual phase steel. The different bainite contents (18–53 vol.%) in polygonal ferrite and bainite (PF + B) dual phase steel were obtained by controlling the relaxation finish temperature during the rolling process. The effect of bainite volume fraction on the tensile deformability was systematically investigated via experiments and crystal plasticity finite element model (CPFEM) simulation. The experimental results showed that the steel showed optimal strain hardenability and strength–plasticity matching when the bainite reached 35%. The 3D-CPFEM models with the same grain size and texture characters were established to clarify the influence of stress/strain distribution on PF + B dual phase steel with different bainite contents. The simulation results indicated that an appropriate increase in the bainite content (18%–35%) did not affect the interphase strain difference, but increased the stress distribution in both phases, as a result of enhancing the coordinated deformability of two phases and improving the strength–plasticity matching. When the bainite content increased to 53%, the stress/strain difference between the two phases was greatly increased, and plastic damage between the two phases was caused by the reduction of the coordinated deformability.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"61 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01232-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The phase volume fraction has an important role in the match of the strength and plasticity of dual phase steel. The different bainite contents (18–53 vol.%) in polygonal ferrite and bainite (PF + B) dual phase steel were obtained by controlling the relaxation finish temperature during the rolling process. The effect of bainite volume fraction on the tensile deformability was systematically investigated via experiments and crystal plasticity finite element model (CPFEM) simulation. The experimental results showed that the steel showed optimal strain hardenability and strength–plasticity matching when the bainite reached 35%. The 3D-CPFEM models with the same grain size and texture characters were established to clarify the influence of stress/strain distribution on PF + B dual phase steel with different bainite contents. The simulation results indicated that an appropriate increase in the bainite content (18%–35%) did not affect the interphase strain difference, but increased the stress distribution in both phases, as a result of enhancing the coordinated deformability of two phases and improving the strength–plasticity matching. When the bainite content increased to 53%, the stress/strain difference between the two phases was greatly increased, and plastic damage between the two phases was caused by the reduction of the coordinated deformability.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..