Profit Maximization In Arbitrage Loops

Yu Zhang, Zichen Li, Tao Yan, Qianyu Liu, Nicolo Vallarano, Claudio Tessone
{"title":"Profit Maximization In Arbitrage Loops","authors":"Yu Zhang, Zichen Li, Tao Yan, Qianyu Liu, Nicolo Vallarano, Claudio Tessone","doi":"arxiv-2406.16600","DOIUrl":null,"url":null,"abstract":"Cyclic arbitrage chances exist abundantly among decentralized exchanges\n(DEXs), like Uniswap V2. For an arbitrage cycle (loop), researchers or\npractitioners usually choose a specific token, such as Ether as input, and\noptimize their input amount to get the net maximal amount of the specific token\nas arbitrage profit. By considering the tokens' prices from CEXs in this paper,\nthe new arbitrage profit, called monetized arbitrage profit, will be quantified\nas the product of the net number of a specific token we got from the arbitrage\nloop and its corresponding price in CEXs. Based on this concept, we put forward\nthree different strategies to maximize the monetized arbitrage profit for each\narbitrage loop. The first strategy is called the MaxPrice strategy. Under this\nstrategy, arbitrageurs start arbitrage only from the token with the highest CEX\nprice. The second strategy is called the MaxMax strategy. Under this strategy,\nwe calculate the monetized arbitrage profit for each token as input in turn in\nthe arbitrage loop. Then, we pick up the most maximal monetized arbitrage\nprofit among them as the monetized arbitrage profit of the MaxMax strategy. The\nthird one is called the Convex Optimization strategy. By mapping the MaxMax\nstrategy to a convex optimization problem, we proved that the Convex\nOptimization strategy could get more profit in theory than the MaxMax strategy,\nwhich is proved again in a given example. We also proved that if no arbitrage\nprofit exists according to the MaxMax strategy, then the Convex Optimization\nstrategy can not detect any arbitrage profit, either. However, the empirical\ndata analysis denotes that the profitability of the Convex Optimization\nstrategy is almost equal to that of the MaxMax strategy, and the MaxPrice\nstrategy is not reliable in getting the maximal monetized arbitrage profit\ncompared to the MaxMax strategy.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclic arbitrage chances exist abundantly among decentralized exchanges (DEXs), like Uniswap V2. For an arbitrage cycle (loop), researchers or practitioners usually choose a specific token, such as Ether as input, and optimize their input amount to get the net maximal amount of the specific token as arbitrage profit. By considering the tokens' prices from CEXs in this paper, the new arbitrage profit, called monetized arbitrage profit, will be quantified as the product of the net number of a specific token we got from the arbitrage loop and its corresponding price in CEXs. Based on this concept, we put forward three different strategies to maximize the monetized arbitrage profit for each arbitrage loop. The first strategy is called the MaxPrice strategy. Under this strategy, arbitrageurs start arbitrage only from the token with the highest CEX price. The second strategy is called the MaxMax strategy. Under this strategy, we calculate the monetized arbitrage profit for each token as input in turn in the arbitrage loop. Then, we pick up the most maximal monetized arbitrage profit among them as the monetized arbitrage profit of the MaxMax strategy. The third one is called the Convex Optimization strategy. By mapping the MaxMax strategy to a convex optimization problem, we proved that the Convex Optimization strategy could get more profit in theory than the MaxMax strategy, which is proved again in a given example. We also proved that if no arbitrage profit exists according to the MaxMax strategy, then the Convex Optimization strategy can not detect any arbitrage profit, either. However, the empirical data analysis denotes that the profitability of the Convex Optimization strategy is almost equal to that of the MaxMax strategy, and the MaxPrice strategy is not reliable in getting the maximal monetized arbitrage profit compared to the MaxMax strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
套利循环中的利润最大化
循环套利机会在去中心化交易所(DEX)(如 Uniswap V2)中大量存在。在一个套利循环(loop)中,研究者或实践者通常会选择特定的代币(如以太币)作为输入,并优化其输入量,以获得特定代币的最大净值作为套利利润。本文通过考虑 CEX 中的代币价格,将新的套利利润(称为货币化套利利润)量化为我们从套利圈中获得的特定代币的净数量与其在 CEX 中的相应价格的乘积。基于这一概念,我们提出了三种不同的策略,以最大化每个套利循环的货币化套利利润。第一种策略称为最大价格策略。在这种策略下,套利者只从 CEX 价格最高的代币开始套利。第二种策略称为 MaxMax 策略。在该策略下,我们依次计算每个代币的货币化套利利润,作为套利循环的输入。然后,我们选取其中货币化套利利润最大的一个作为 MaxMax 策略的货币化套利利润。第三种策略称为凸优化策略。通过将 MaxMax 策略映射为凸优化问题,我们证明了凸优化策略在理论上可以比 MaxMax 策略获得更多的利润,并在一个给定的例子中再次证明了这一点。我们还证明,如果根据 MaxMax 策略不存在套利利润,那么凸优化策略也无法发现任何套利利润。然而,经验数据分析表明,凸优化策略的盈利能力几乎与 MaxMax 策略相当,而 MaxPricestrategy 与 MaxMax 策略相比,在获取最大货币化套利利润方面并不可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1