Essential Self-Adjointness of Even-Order, Strongly Singular, Homogeneous Half-Line Differential Operators

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL Annales Henri Poincaré Pub Date : 2024-06-23 DOI:10.1007/s00023-024-01451-0
Fritz Gesztesy, Markus Hunziker, Gerald Teschl
{"title":"Essential Self-Adjointness of Even-Order, Strongly Singular, Homogeneous Half-Line Differential Operators","authors":"Fritz Gesztesy, Markus Hunziker, Gerald Teschl","doi":"10.1007/s00023-024-01451-0","DOIUrl":null,"url":null,"abstract":"<p>We consider essential self-adjointness on the space <span>\\(C_0^{\\infty }((0,\\infty ))\\)</span> of even-order, strongly singular, homogeneous differential operators associated with differential expressions of the type </p><span>$$\\begin{aligned} \\tau _{2n}(c) = (-1)^n \\frac{d^{2n}}{d x^{2n}} + \\frac{c}{x^{2n}}, \\quad x &gt; 0, \\; n \\in {{\\mathbb {N}}}, \\; c \\in {{\\mathbb {R}}}, \\end{aligned}$$</span><p>in <span>\\(L^2((0,\\infty );dx)\\)</span>. While the special case <span>\\(n=1\\)</span> is classical and it is well known that <span>\\(\\tau _2(c)\\big |_{C_0^{\\infty }((0,\\infty ))}\\)</span> is essentially self-adjoint if and only if <span>\\(c \\ge 3/4\\)</span>, the case <span>\\(n \\in {{\\mathbb {N}}}\\)</span>, <span>\\(n \\ge 2\\)</span>, is far from obvious. In particular, it is not at all clear from the outset that </p><span>$$\\begin{aligned} \\begin{aligned}&amp;\\textit{there exists }c_n \\in {{\\mathbb {R}}}, n \\in {{\\mathbb {N}}}\\textit{, such that} \\\\&amp;\\quad \\tau _{2n}(c)\\big |_{C_0^{\\infty }((0,\\infty ))} \\, \\textit{ is essentially self-adjoint}\\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad (*)\\\\ {}&amp;\\quad \\textit{ if and only if } c \\ge c_n. \\end{aligned} \\end{aligned}$$</span><p>As one of the principal results of this paper we indeed establish the existence of <span>\\(c_n\\)</span>, satisfying <span>\\(c_n \\ge (4n-1)!!\\big /2^{2n}\\)</span>, such that property (*) holds. In sharp contrast to the analogous lower semiboundedness question, </p><span>$$\\begin{aligned} \\textit{for which values of }c\\textit{ is }\\tau _{2n}(c)\\big |_{C_0^{\\infty }((0,\\infty ))}{} \\textit{ bounded from below?}, \\end{aligned}$$</span><p>which permits the sharp (and explicit) answer <span>\\(c \\ge [(2n -1)!!]^{2}\\big /2^{2n}\\)</span>, <span>\\(n \\in {{\\mathbb {N}}}\\)</span>, the answer for (*) is surprisingly complex and involves various aspects of the geometry and analytical theory of polynomials. For completeness we record explicitly, </p><span>$$\\begin{aligned} c_{1}&amp;= 3/4, \\quad c_{2 }= 45, \\quad c_{3 } = 2240 \\big (214+7 \\sqrt{1009}\\,\\big )\\big /27, \\end{aligned}$$</span><p>and remark that <span>\\(c_n\\)</span> is the root of a polynomial of degree <span>\\(n-1\\)</span>. We demonstrate that for <span>\\(n=6,7\\)</span>, <span>\\(c_n\\)</span> are algebraic numbers not expressible as radicals over <span>\\({{\\mathbb {Q}}}\\)</span> (and conjecture this is in fact true for general <span>\\(n \\ge 6\\)</span>).</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"18 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-024-01451-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider essential self-adjointness on the space \(C_0^{\infty }((0,\infty ))\) of even-order, strongly singular, homogeneous differential operators associated with differential expressions of the type

$$\begin{aligned} \tau _{2n}(c) = (-1)^n \frac{d^{2n}}{d x^{2n}} + \frac{c}{x^{2n}}, \quad x > 0, \; n \in {{\mathbb {N}}}, \; c \in {{\mathbb {R}}}, \end{aligned}$$

in \(L^2((0,\infty );dx)\). While the special case \(n=1\) is classical and it is well known that \(\tau _2(c)\big |_{C_0^{\infty }((0,\infty ))}\) is essentially self-adjoint if and only if \(c \ge 3/4\), the case \(n \in {{\mathbb {N}}}\), \(n \ge 2\), is far from obvious. In particular, it is not at all clear from the outset that

$$\begin{aligned} \begin{aligned}&\textit{there exists }c_n \in {{\mathbb {R}}}, n \in {{\mathbb {N}}}\textit{, such that} \\&\quad \tau _{2n}(c)\big |_{C_0^{\infty }((0,\infty ))} \, \textit{ is essentially self-adjoint}\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (*)\\ {}&\quad \textit{ if and only if } c \ge c_n. \end{aligned} \end{aligned}$$

As one of the principal results of this paper we indeed establish the existence of \(c_n\), satisfying \(c_n \ge (4n-1)!!\big /2^{2n}\), such that property (*) holds. In sharp contrast to the analogous lower semiboundedness question,

$$\begin{aligned} \textit{for which values of }c\textit{ is }\tau _{2n}(c)\big |_{C_0^{\infty }((0,\infty ))}{} \textit{ bounded from below?}, \end{aligned}$$

which permits the sharp (and explicit) answer \(c \ge [(2n -1)!!]^{2}\big /2^{2n}\), \(n \in {{\mathbb {N}}}\), the answer for (*) is surprisingly complex and involves various aspects of the geometry and analytical theory of polynomials. For completeness we record explicitly,

$$\begin{aligned} c_{1}&= 3/4, \quad c_{2 }= 45, \quad c_{3 } = 2240 \big (214+7 \sqrt{1009}\,\big )\big /27, \end{aligned}$$

and remark that \(c_n\) is the root of a polynomial of degree \(n-1\). We demonstrate that for \(n=6,7\), \(c_n\) are algebraic numbers not expressible as radicals over \({{\mathbb {Q}}}\) (and conjecture this is in fact true for general \(n \ge 6\)).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
偶阶、强奇异、同质半线微分算子的本质自洽性
我们考虑偶阶、强奇异、同质微分算子空间 (C_0^{\infty }((0,\infty ))\) 上的基本自相接性,该空间与 $$\begin{aligned} 类型的微分表达式相关联。\tau _{2n}(c) = (-1)^n \frac{d^{2n}}{d x^{2n}}+ \frac{c}{x^{2n}}, \quad x > 0, \; n in {{\mathbb {N}}}, \; c in {{\mathbb {R}}}, \end{aligned}$$in \(L^2((0,\infty );dx)\).虽然特殊情况(n=1)是经典的,而且众所周知,当且仅当(c)ge 3/4时,((tau _2(c)\big |_{C_0^{infty }((0,\infty ))}\) 本质上是自相加的,但情况(n 在{{mathbb {N}}}),(nge 2),远非显而易见。特别是,从一开始就不清楚 $$\begin{aligned}\there exists }c_n in {{mathbb {R}}, n in {{mathbb {N}}textit{, such that}|_{C_0^{infty }((0,\infty ))}\&\quad \tau _{2n}(c)\big |_{C_0^{infty }((0,\infty ))}\(*)\ {}&\quad \textit{ is essentially self-adjoint}\quad \quad \quad \quad \quad (*)\ {}&\quad \textit{ if and only if } c \ge c_n.\end{aligned}\end{aligned}$$作为本文的主要结果之一,我们确实建立了满足 (c_n \ge (4n-1)!!\big /2^{2n}\)的 \(c_n\)的存在,使得性质(*)成立。与类似的下半边界问题形成鲜明对比的是,$$\begin{aligned}(开始{aligned})。\对于哪些 }c 值来说是 }tau _{2n}(c)\big |_{C_0^{infty }((0,\infty ))}{}?\textit{ bounded from below? }, \end{aligned}$$which permits the sharp (and explicit) answer \(c \ge [(2n -1)!!]^{2}\big /2^{2n}\), \(n \in {{\mathbb {N}}\}), the answer for (*) is surprisingly complex and involves various aspects of the geometry and analytical theory of polynomials.为了完整起见,我们明确记录: $$\begin{aligned} c_{1}&= 3/4, \quad c_{2 }= 45, \quad c_{3 } = 2240 \big (*)。= 2240 \big (214+7 \sqrt{1009}\,\big )\big /27, \end{aligned}$$并且指出\(c_n\)是一个度数为\(n-1\)的多项式的根。我们证明了对于 \(n=6,7\), \(c_n\) 是代数数,不能表示为 \({{\mathbb {Q}}\) 上的根(并且猜想这对于一般的 \(n \ge 6\) 实际上是真的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
期刊最新文献
Interpolating Between Rényi Entanglement Entropies for Arbitrary Bipartitions via Operator Geometric Means Schur Function Expansion in Non-Hermitian Ensembles and Averages of Characteristic Polynomials Kac–Ward Solution of the 2D Classical and 1D Quantum Ising Models A Meta Logarithmic-Sobolev Inequality for Phase-Covariant Gaussian Channels Tunneling Estimates for Two-Dimensional Perturbed Magnetic Dirac Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1