Improving short-term forecasting of solar power generation by using an EEMD-BiGRU model: A comparative study based on seven standalone models and six hybrid models

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS International Journal of Green Energy Pub Date : 2024-05-27 DOI:10.1080/15435075.2024.2356103
Lingyun Jia, Sining Yun, Zeni Zhao, Jiaxin Guo, Yao Meng, Xuejuan Li, Jiarong Shi, Ning He, Liu Yang
{"title":"Improving short-term forecasting of solar power generation by using an EEMD-BiGRU model: A comparative study based on seven standalone models and six hybrid models","authors":"Lingyun Jia, Sining Yun, Zeni Zhao, Jiaxin Guo, Yao Meng, Xuejuan Li, Jiarong Shi, Ning He, Liu Yang","doi":"10.1080/15435075.2024.2356103","DOIUrl":null,"url":null,"abstract":"Accurate and timely forecasting is critical for grid-connected solar power safety and stability, achieved through machine learning (ML) for both common and real-time applications. To mitigate the i...","PeriodicalId":14000,"journal":{"name":"International Journal of Green Energy","volume":"38 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Green Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15435075.2024.2356103","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and timely forecasting is critical for grid-connected solar power safety and stability, achieved through machine learning (ML) for both common and real-time applications. To mitigate the i...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 EEMD-BiGRU 模型改进太阳能发电的短期预测:基于七个独立模型和六个混合模型的比较研究
准确、及时的预测对于并网太阳能发电的安全性和稳定性至关重要,这可以通过机器学习(ML)在普通和实时应用中实现。为了减轻并网发电的不稳定性,我们需要对并网太阳能发电的...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Green Energy
International Journal of Green Energy 工程技术-能源与燃料
CiteScore
6.60
自引率
9.10%
发文量
112
审稿时长
3.7 months
期刊介绍: International Journal of Green Energy shares multidisciplinary research results in the fields of energy research, energy conversion, energy management, and energy conservation, with a particular interest in advanced, environmentally friendly energy technologies. We publish research that focuses on the forms and utilizations of energy that have no, minimal, or reduced impact on environment, economy and society.
期刊最新文献
Development of a hybrid renewable energy system for residential complexes in solar-rich regions, harnessing the collaborative power of TRNSYS and the response surface methodology The effect of geopolitical risk on the clean energy metals’ prices: the evidence of BRICS countries CO2 emissions of fuel-cell battery hybrid system for large ships Dynamic response and safety performance of composite-laminated heliostat under hail impact A novel sensor preference method for proton exchange membrane fuel cell flooding fault diagnosis based on multi-algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1