Revealing the Diverse Electrochemistry of Nanoparticles with Scanning Electrochemical Cell Microscopy

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Faraday Discussions Pub Date : 2024-06-17 DOI:10.1039/d4fd00115j
Lachlan Gaudin, Cameron Luke Bentley
{"title":"Revealing the Diverse Electrochemistry of Nanoparticles with Scanning Electrochemical Cell Microscopy","authors":"Lachlan Gaudin, Cameron Luke Bentley","doi":"10.1039/d4fd00115j","DOIUrl":null,"url":null,"abstract":"The next generation of electroactive materials will depend on advanced nanomaterials, such as nanoparticles (NPs) for improved function and reduced cost. As such, the development of structure-function relationships for these NPs has become a prime focus for researchers from many fields, including materials science, catalysis, energy storage, photovoltaics, environmental/biomedical sensing, etc. The technique of scanning electrochemical cell microscopy (SECCM) has naturally positioned itself as a premier experimental methodology for the investigation of electroactive NPs, due to its unique capability to encapsulate individual, spatially distinct entities, and to apply a potential to (and measure the resulting current of) single-NPs. Over the course of conducting these single-NP investigations, a number of unexpected (i.e. rarely-reported) results have been collected, including fluctuating current responses, and carrying of the NP by the SECCM probe, hypothesised to be due to insufficient NP-surface interaction. Additionally, locations with measurable electrochemical activity have been found to contain no associated NP, and conversely locations with no activity have been found to contain NPs. Through presenting and discussing these findings, this article seeks to highlight the complications associated with single-NP SECCM measurements in order to endorse the broad inclusivity of data.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"38 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00115j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The next generation of electroactive materials will depend on advanced nanomaterials, such as nanoparticles (NPs) for improved function and reduced cost. As such, the development of structure-function relationships for these NPs has become a prime focus for researchers from many fields, including materials science, catalysis, energy storage, photovoltaics, environmental/biomedical sensing, etc. The technique of scanning electrochemical cell microscopy (SECCM) has naturally positioned itself as a premier experimental methodology for the investigation of electroactive NPs, due to its unique capability to encapsulate individual, spatially distinct entities, and to apply a potential to (and measure the resulting current of) single-NPs. Over the course of conducting these single-NP investigations, a number of unexpected (i.e. rarely-reported) results have been collected, including fluctuating current responses, and carrying of the NP by the SECCM probe, hypothesised to be due to insufficient NP-surface interaction. Additionally, locations with measurable electrochemical activity have been found to contain no associated NP, and conversely locations with no activity have been found to contain NPs. Through presenting and discussing these findings, this article seeks to highlight the complications associated with single-NP SECCM measurements in order to endorse the broad inclusivity of data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用扫描电化学细胞显微镜揭示纳米粒子的多样化电化学特性
下一代电活性材料将依赖于先进的纳米材料,如纳米粒子(NPs)来提高功能和降低成本。因此,开发这些 NPs 的结构-功能关系已成为材料科学、催化、能量存储、光伏、环境/生物医学传感等多个领域研究人员的首要关注点。扫描电化学细胞显微镜 (SECCM) 技术由于其独特的封装单个空间不同实体的能力,以及对单个 NPs 施加电势(并测量由此产生的电流)的能力,自然而然地成为研究电活性 NPs 的主要实验方法。在进行这些单 NP 研究的过程中,收集到了许多意想不到的(即很少报道的)结果,包括波动电流响应,以及 SECCM 探针携带 NP(假设是由于 NP 与表面相互作用不足)。此外,还发现具有可测量电化学活性的位置不包含相关的 NP,反之,没有活性的位置也包含 NP。通过介绍和讨论这些发现,本文试图强调与单 NP SECCM 测量相关的复杂性,以认可数据的广泛包容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Discovering synthesis targets: general discussion. Discovering trends in big data: general discussion. Discovering structure-property correlations: general discussion. Discovering chemical structure: general discussion. Understanding dynamics and mechanisms: general discussion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1