Implementation of extended kalman filter for localization of ambulance robot

Chan-Yun Yang, Hooman Samani, Zirong Tang, Chunxu Li
{"title":"Implementation of extended kalman filter for localization of ambulance robot","authors":"Chan-Yun Yang, Hooman Samani, Zirong Tang, Chunxu Li","doi":"10.1007/s41315-024-00352-z","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the implementation of the Extended Kalman Filter for indoor localization of a semi-autonomous Ambulance Robot system named Ambubot. The system is designed to reduce the response time for lay rescuers to locate an Automated External Defibrillator (AED) during sudden cardiac arrest events. To achieve this objective, the robot is equipped with an AED, and the Extended Kalman Filter is utilized for optimal indoor localization. The filter is implemented using data from the robot’s Inertial Measurement Unit, which comprises 9 Degrees of Freedom. The paper provides an explicit description of the performance of the Extended Kalman Filter in estimating the position of Ambubot, and demonstrates that the proposed approach is effective in accurately determining and estimating the robot’s position in unknown indoor environments. The results suggest that the proposed method is a promising solution for improving survival rates in cardiac arrest cases, and may have potential applications in other fields where accurate indoor localization is required.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"21 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Robotics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41315-024-00352-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the implementation of the Extended Kalman Filter for indoor localization of a semi-autonomous Ambulance Robot system named Ambubot. The system is designed to reduce the response time for lay rescuers to locate an Automated External Defibrillator (AED) during sudden cardiac arrest events. To achieve this objective, the robot is equipped with an AED, and the Extended Kalman Filter is utilized for optimal indoor localization. The filter is implemented using data from the robot’s Inertial Measurement Unit, which comprises 9 Degrees of Freedom. The paper provides an explicit description of the performance of the Extended Kalman Filter in estimating the position of Ambubot, and demonstrates that the proposed approach is effective in accurately determining and estimating the robot’s position in unknown indoor environments. The results suggest that the proposed method is a promising solution for improving survival rates in cardiac arrest cases, and may have potential applications in other fields where accurate indoor localization is required.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现用于救护车机器人定位的扩展卡尔曼滤波器
本文重点介绍了扩展卡尔曼滤波器在名为 Ambubot 的半自主救护机器人系统室内定位中的应用。该系统旨在缩短非专业救援人员在心脏骤停事件中定位自动体外除颤器(AED)的响应时间。为实现这一目标,机器人配备了自动体外除颤器,并利用扩展卡尔曼滤波器进行最佳室内定位。该滤波器是利用机器人惯性测量单元的数据实现的,惯性测量单元由 9 个自由度组成。论文明确描述了扩展卡尔曼滤波器在估计 Ambubot 位置时的性能,并证明了所提出的方法能够有效地在未知的室内环境中准确确定和估计机器人的位置。结果表明,所提出的方法是提高心脏骤停病例存活率的一个很有前途的解决方案,并有可能应用于需要精确室内定位的其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
5.90%
发文量
50
期刊介绍: The International Journal of Intelligent Robotics and Applications (IJIRA) fosters the dissemination of new discoveries and novel technologies that advance developments in robotics and their broad applications. This journal provides a publication and communication platform for all robotics topics, from the theoretical fundamentals and technological advances to various applications including manufacturing, space vehicles, biomedical systems and automobiles, data-storage devices, healthcare systems, home appliances, and intelligent highways. IJIRA welcomes contributions from researchers, professionals and industrial practitioners. It publishes original, high-quality and previously unpublished research papers, brief reports, and critical reviews. Specific areas of interest include, but are not limited to:Advanced actuators and sensorsCollective and social robots Computing, communication and controlDesign, modeling and prototypingHuman and robot interactionMachine learning and intelligenceMobile robots and intelligent autonomous systemsMulti-sensor fusion and perceptionPlanning, navigation and localizationRobot intelligence, learning and linguisticsRobotic vision, recognition and reconstructionBio-mechatronics and roboticsCloud and Swarm roboticsCognitive and neuro roboticsExploration and security roboticsHealthcare, medical and assistive roboticsRobotics for intelligent manufacturingService, social and entertainment roboticsSpace and underwater robotsNovel and emerging applications
期刊最新文献
A review of the application of fuzzy mathematical algorithm-based approach in autonomous vehicles and drones Robotic tree climbers and strategies - a survey Efficient multi-robot path planning in real environments: a centralized coordination system Cross-pollination of knowledge for object detection in domain adaptation for industrial automation Push or pull: grasping performance analysis between a pulling gripper inspired by Tetraonchus monenteron parasite versus an actively pushing gripper developed through many-objective design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1