Gopinath Selvam, Mohan Kamalanandhini, Muthuvel Velpandian, Sheema Shah
{"title":"Duration and resource constraint prediction models for construction projects using regression machine learning method","authors":"Gopinath Selvam, Mohan Kamalanandhini, Muthuvel Velpandian, Sheema Shah","doi":"10.1108/ecam-06-2023-0582","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The construction projects are highly subjected to uncertainties, which result in overruns in time and cost. Realistic estimates of workforce and duration are imperative for construction projects to attain their intended objectives. The aim of this study is to provide accurate labor and duration estimates for the construction projects, considering actual uncertainties.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The dataset was formulated from the information collected from 186 construction projects through direct interviews, group discussions and questionnaire methods. The actual uncertainties and exposure conditions of construction activities were recorded. The data were verified with the standard guideline to remove the outliers. The prediction model was developed using support vector regression (SVR), a machine learning (ML) method. The performance was evaluated using the widely adopted regression metrics. Further, the cross validation was made with the visualization of residuals and predicted errors, ridge regression with transformed target distribution and a Gaussian Naive Bayes (NB) regressor.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The prediction models predicted the duration and labor requirements with the consideration of actual uncertainties. The residual plot indicated the appropriate use of SVR to develop the prediction model. The duration (DC) and resource constraint (RC) prediction models obtained 80 and 82% accuracy, respectively. Besides, the developed model obtained better accuracy for the training and test scores than the Gaussian NB regressor. Further, the range of the explained variance score and R<sup>2</sup> was from 0.95 to 0.97, indicating better efficiency compared with other prediction models.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>The researchers will utilize the research findings to estimate the duration and labor requirements under uncertain conditions and further improve the construction project management practices.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>The research findings will enable industry practitioners to accurately estimate the duration and labor requirements, considering historical uncertain conditions. A precise estimation of resources will ensure the attainment of the intended project outcomes.</p><!--/ Abstract__block -->\n<h3>Social implications</h3>\n<p>Delays in construction projects will be reduced by implementing the research findings, which significantly ensures the effective utilization of resources and attainment of other economic benefits. The policymakers will develop a guideline to develop a database to collect the uncertainties of the construction projects and relatively estimate the resource requirements.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This is the first study to consider the actual uncertainties of construction projects to develop RC and DC prediction models. The developed prediction models accurately estimate the duration and labor requirements with minimal computational time. The industry practitioners will be able to accurately estimate the duration and labor requirements using the developed models.</p><!--/ Abstract__block -->","PeriodicalId":11888,"journal":{"name":"Engineering, Construction and Architectural Management","volume":"45 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Construction and Architectural Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ecam-06-2023-0582","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The construction projects are highly subjected to uncertainties, which result in overruns in time and cost. Realistic estimates of workforce and duration are imperative for construction projects to attain their intended objectives. The aim of this study is to provide accurate labor and duration estimates for the construction projects, considering actual uncertainties.
Design/methodology/approach
The dataset was formulated from the information collected from 186 construction projects through direct interviews, group discussions and questionnaire methods. The actual uncertainties and exposure conditions of construction activities were recorded. The data were verified with the standard guideline to remove the outliers. The prediction model was developed using support vector regression (SVR), a machine learning (ML) method. The performance was evaluated using the widely adopted regression metrics. Further, the cross validation was made with the visualization of residuals and predicted errors, ridge regression with transformed target distribution and a Gaussian Naive Bayes (NB) regressor.
Findings
The prediction models predicted the duration and labor requirements with the consideration of actual uncertainties. The residual plot indicated the appropriate use of SVR to develop the prediction model. The duration (DC) and resource constraint (RC) prediction models obtained 80 and 82% accuracy, respectively. Besides, the developed model obtained better accuracy for the training and test scores than the Gaussian NB regressor. Further, the range of the explained variance score and R2 was from 0.95 to 0.97, indicating better efficiency compared with other prediction models.
Research limitations/implications
The researchers will utilize the research findings to estimate the duration and labor requirements under uncertain conditions and further improve the construction project management practices.
Practical implications
The research findings will enable industry practitioners to accurately estimate the duration and labor requirements, considering historical uncertain conditions. A precise estimation of resources will ensure the attainment of the intended project outcomes.
Social implications
Delays in construction projects will be reduced by implementing the research findings, which significantly ensures the effective utilization of resources and attainment of other economic benefits. The policymakers will develop a guideline to develop a database to collect the uncertainties of the construction projects and relatively estimate the resource requirements.
Originality/value
This is the first study to consider the actual uncertainties of construction projects to develop RC and DC prediction models. The developed prediction models accurately estimate the duration and labor requirements with minimal computational time. The industry practitioners will be able to accurately estimate the duration and labor requirements using the developed models.
期刊介绍:
ECAM publishes original peer-reviewed research papers, case studies, technical notes, book reviews, features, discussions and other contemporary articles that advance research and practice in engineering, construction and architectural management. In particular, ECAM seeks to advance integrated design and construction practices, project lifecycle management, and sustainable construction. The journal’s scope covers all aspects of architectural design, design management, construction/project management, engineering management of major infrastructure projects, and the operation and management of constructed facilities. ECAM also addresses the technological, process, economic/business, environmental/sustainability, political, and social/human developments that influence the construction project delivery process.
ECAM strives to establish strong theoretical and empirical debates in the above areas of engineering, architecture, and construction research. Papers should be heavily integrated with the existing and current body of knowledge within the field and develop explicit and novel contributions. Acknowledging the global character of the field, we welcome papers on regional studies but encourage authors to position the work within the broader international context by reviewing and comparing findings from their regional study with studies conducted in other regions or countries whenever possible.