Non-Lipschitz Variational Models and their Iteratively Reweighted Least Squares Algorithms for Image Denoising on Surfaces

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-20 DOI:10.1137/23m159439x
Yuan Liu, Chunlin Wu, Chao Zeng
{"title":"Non-Lipschitz Variational Models and their Iteratively Reweighted Least Squares Algorithms for Image Denoising on Surfaces","authors":"Yuan Liu, Chunlin Wu, Chao Zeng","doi":"10.1137/23m159439x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 1255-1283, June 2024. <br/> Abstract.Image processing on surfaces has gotten increasing interest in recent years, and denoising is a basic problem in image processing. In this paper, we extend non-Lipschitz variational methods for 2D image denoising, including TV[math], to image denoising on surfaces. We establish a lower bound for nonzero gradients of the recovered image, implying the advantage of the models in recovering piecewise constant images. A new iteratively reweighted least squares algorithm with the thresholding and support shrinking strategy is proposed. The global convergence of the algorithm is established under the assumption that the object function is a Kurdyka–Łojasiewicz function. Numerical examples are given to show good performance of the algorithm.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m159439x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 1255-1283, June 2024.
Abstract.Image processing on surfaces has gotten increasing interest in recent years, and denoising is a basic problem in image processing. In this paper, we extend non-Lipschitz variational methods for 2D image denoising, including TV[math], to image denoising on surfaces. We establish a lower bound for nonzero gradients of the recovered image, implying the advantage of the models in recovering piecewise constant images. A new iteratively reweighted least squares algorithm with the thresholding and support shrinking strategy is proposed. The global convergence of the algorithm is established under the assumption that the object function is a Kurdyka–Łojasiewicz function. Numerical examples are given to show good performance of the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于曲面图像去噪的非 Lipschitz 变分模型及其迭代加权最小二乘法算法
SIAM 影像科学杂志》,第 17 卷第 2 期,第 1255-1283 页,2024 年 6 月。 摘要.近年来,曲面图像处理越来越受到关注,而去噪是图像处理中的一个基本问题。本文将TV[math]等用于二维图像去噪的非Lipschitz变分方法扩展到曲面图像去噪。我们建立了恢复图像的非零梯度下限,这意味着模型在恢复片断常数图像方面具有优势。我们提出了一种采用阈值和支持缩小策略的新的迭代再加权最小二乘法算法。在假设对象函数是 Kurdyka-Łojasiewicz 函数的前提下,确定了算法的全局收敛性。给出的数值示例显示了该算法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1