Marginal Likelihood Estimation in Semiblind Image Deconvolution: A Stochastic Approximation Approach

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-19 DOI:10.1137/23m1584496
Charlesquin Kemajou Mbakam, Marcelo Pereyra, Jean-François Giovannelli
{"title":"Marginal Likelihood Estimation in Semiblind Image Deconvolution: A Stochastic Approximation Approach","authors":"Charlesquin Kemajou Mbakam, Marcelo Pereyra, Jean-François Giovannelli","doi":"10.1137/23m1584496","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 1206-1254, June 2024. <br/> Abstract.This paper presents a novel stochastic optimization methodology to perform empirical Bayesian inference in semi-blind image deconvolution problems. Given a blurred image and a parametric class of possible operators, the proposed optimization approach automatically calibrates the parameters of the blur model by maximum marginal likelihood estimation, followed by (non-blind) image deconvolution by maximum a posteriori estimation conditionally to the estimated model parameters. In addition to the blur model, the proposed approach also automatically calibrates the noise level as well as any regularization parameters. The marginal likelihood of the blur, noise, and regularization parameters is generally computationally intractable, as it requires calculating several integrals over the entire solution space. Our approach addresses this difficulty by using a stochastic approximation proximal gradient optimization scheme, which iteratively solves such integrals by using a Moreau–Yosida regularized unadjusted Langevin Markov chain Monte Carlo algorithm. This optimization strategy can be easily and efficiently applied to any model that is log-concave and by using the same gradient and proximal operators that are required to compute the maximum a posteriori solution by convex optimization. We provide convergence guarantees for the proposed optimization scheme under realistic and easily verifiable conditions and subsequently demonstrate the effectiveness of the approach with a series of deconvolution experiments and comparisons with alternative strategies from the state of the art","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1584496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 1206-1254, June 2024.
Abstract.This paper presents a novel stochastic optimization methodology to perform empirical Bayesian inference in semi-blind image deconvolution problems. Given a blurred image and a parametric class of possible operators, the proposed optimization approach automatically calibrates the parameters of the blur model by maximum marginal likelihood estimation, followed by (non-blind) image deconvolution by maximum a posteriori estimation conditionally to the estimated model parameters. In addition to the blur model, the proposed approach also automatically calibrates the noise level as well as any regularization parameters. The marginal likelihood of the blur, noise, and regularization parameters is generally computationally intractable, as it requires calculating several integrals over the entire solution space. Our approach addresses this difficulty by using a stochastic approximation proximal gradient optimization scheme, which iteratively solves such integrals by using a Moreau–Yosida regularized unadjusted Langevin Markov chain Monte Carlo algorithm. This optimization strategy can be easily and efficiently applied to any model that is log-concave and by using the same gradient and proximal operators that are required to compute the maximum a posteriori solution by convex optimization. We provide convergence guarantees for the proposed optimization scheme under realistic and easily verifiable conditions and subsequently demonstrate the effectiveness of the approach with a series of deconvolution experiments and comparisons with alternative strategies from the state of the art
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半盲图像解卷积中的边际似然估计:随机逼近法
SIAM 影像科学杂志》,第 17 卷第 2 期,第 1206-1254 页,2024 年 6 月。 摘要:本文提出了一种新颖的随机优化方法,用于在半盲图像解卷积问题中执行经验贝叶斯推理。给定一幅模糊图像和一类可能的算子参数,所提出的优化方法通过最大边际似然估计自动校准模糊模型参数,然后根据估计的模型参数通过最大后验估计进行(非盲)图像解卷积。除了模糊模型外,所提出的方法还能自动校准噪声水平以及任何正则化参数。模糊、噪声和正则化参数的边际似然通常难以计算,因为它需要计算整个解空间的多个积分。我们的方法通过使用随机近似近似梯度优化方案解决了这一难题,该方案通过使用莫罗-尤西达正则化未调整朗之文马尔可夫链蒙特卡罗算法迭代求解这些积分。这种优化策略可以轻松高效地应用于任何对数凹模型,并使用与凸优化计算最大后验解所需的相同梯度和近似算子。我们在现实且易于验证的条件下为所提出的优化方案提供了收敛保证,并随后通过一系列解卷积实验以及与现有替代策略的比较,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1