AdWords in a Panorama

IF 1.2 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS SIAM Journal on Computing Pub Date : 2024-06-17 DOI:10.1137/22m1478896
Zhiyi Huang, Qiankun Zhang, Yuhao Zhang
{"title":"AdWords in a Panorama","authors":"Zhiyi Huang, Qiankun Zhang, Yuhao Zhang","doi":"10.1137/22m1478896","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Computing, Volume 53, Issue 3, Page 701-763, June 2024. <br/> Abstract. Three decades ago, Karp, Vazirani, and Vazirani [Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, 1990, pp. 352–358] defined the online matching problem and gave an optimal [math]-competitive algorithm. Fifteen years later, Mehta et al. [J. ACM, 54 (2007), pp. 22:1–22:19] introduced the first generalization called AdWords driven by online advertising and obtained the optimal [math] competitive ratio in the special case of small bids. It has been open ever since whether there is an algorithm for general bids better than the 0.5-competitive greedy algorithm. This paper presents a 0.5016-competitive algorithm for AdWords, answering this open question on the positive end. The algorithm builds on several ingredients, including a combination of the online primal dual framework and the configuration linear program of matching problems recently explored by Huang and Zhang [Proceedings of the 52nd ACM Symposium on Theory of Computing, 2020], a novel formulation of AdWords which we call the panorama view, and a generalization of the online correlated selection by Fahrbach et al. [Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science, 2020], which we call the panoramic online correlated selection.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"55 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1137/22m1478896","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Computing, Volume 53, Issue 3, Page 701-763, June 2024.
Abstract. Three decades ago, Karp, Vazirani, and Vazirani [Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, 1990, pp. 352–358] defined the online matching problem and gave an optimal [math]-competitive algorithm. Fifteen years later, Mehta et al. [J. ACM, 54 (2007), pp. 22:1–22:19] introduced the first generalization called AdWords driven by online advertising and obtained the optimal [math] competitive ratio in the special case of small bids. It has been open ever since whether there is an algorithm for general bids better than the 0.5-competitive greedy algorithm. This paper presents a 0.5016-competitive algorithm for AdWords, answering this open question on the positive end. The algorithm builds on several ingredients, including a combination of the online primal dual framework and the configuration linear program of matching problems recently explored by Huang and Zhang [Proceedings of the 52nd ACM Symposium on Theory of Computing, 2020], a novel formulation of AdWords which we call the panorama view, and a generalization of the online correlated selection by Fahrbach et al. [Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science, 2020], which we call the panoramic online correlated selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AdWords 全景
SIAM 计算期刊》,第 53 卷第 3 期,第 701-763 页,2024 年 6 月。 摘要三十年前,Karp、Vazirani 和 Vazirani [Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, 1990, pp.15 年后,Mehta 等人 [J. ACM, 54 (2007), pp.从那时起,是否存在比 0.5 竞争贪婪算法更好的一般出价算法一直是个未知数。本文提出了一种适用于 AdWords 的 0.5016 竞争性算法,从正面回答了这一开放性问题。该算法基于多个要素,包括黄和张(Huang and Zhang)[第 52 届 ACM 计算理论研讨会论文集,2020 年]最近探索的在线原始对偶框架与匹配问题的配置线性程序的结合、我们称之为全景视图的 AdWords 的新表述,以及 Fahrbach 等人[第 61 届 IEEE 计算机科学基础研讨会论文集,2020 年]对在线相关选择的概括,我们称之为全景在线相关选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Journal on Computing
SIAM Journal on Computing 工程技术-计算机:理论方法
CiteScore
4.60
自引率
0.00%
发文量
68
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.
期刊最新文献
Optimal Resizable Arrays Stronger 3-SUM Lower Bounds for Approximate Distance Oracles via Additive Combinatorics Resolving Matrix Spencer Conjecture up to Poly-Logarithmic Rank Complexity Classification Transfer for CSPs via Algebraic Products Optimal Sublinear Sampling of Spanning Trees and Determinantal Point Processes via Average-Case Entropic Independence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1