{"title":"Research on Quantitative Assessment Method for Fire Spread Risk in Enclosed Buildings","authors":"Haodong Sun, Jihong Ye","doi":"10.1007/s10694-024-01588-8","DOIUrl":null,"url":null,"abstract":"<div><p>The main objective of this research is to establish a quantitative risk assessment method for fire spread in enclosed building scenarios. The enclosed building fire spread process is divided into three stages: fire fully developed in the fire compartment, failure of weak barrier, and combustibles ignited in the target compartment. The calculation method for fire spread is established, where the time for fire fully developed is calculated based on the t<sup>2</sup> fire, the barrier failure time is calculated based on the finite difference method, and the combustible ignition time is calculated based on the zone model. The linear regression model is formulated to ensure computational efficiency for fire spread time prediction. The enclosed building fire spread quantitative risk assessment method is proposed based on the Probit model. The effectiveness of the risk assessment method is validated through the enclosed building fire spread experiment, and the method is applied to assess the risk of fire spread in an office. The results demonstrate that the method could quantitatively assess fire spread risk under different conditions with high computational efficiency and excellent versatility, and it could provide guidance for fire prevention, building fire design, and fire rescue.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 5","pages":"3709 - 3738"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-024-01588-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The main objective of this research is to establish a quantitative risk assessment method for fire spread in enclosed building scenarios. The enclosed building fire spread process is divided into three stages: fire fully developed in the fire compartment, failure of weak barrier, and combustibles ignited in the target compartment. The calculation method for fire spread is established, where the time for fire fully developed is calculated based on the t2 fire, the barrier failure time is calculated based on the finite difference method, and the combustible ignition time is calculated based on the zone model. The linear regression model is formulated to ensure computational efficiency for fire spread time prediction. The enclosed building fire spread quantitative risk assessment method is proposed based on the Probit model. The effectiveness of the risk assessment method is validated through the enclosed building fire spread experiment, and the method is applied to assess the risk of fire spread in an office. The results demonstrate that the method could quantitatively assess fire spread risk under different conditions with high computational efficiency and excellent versatility, and it could provide guidance for fire prevention, building fire design, and fire rescue.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.