{"title":"The variation of microbiological characteristics in surface waters during persistent precipitation","authors":"Xinyan Xiao, Chenlan Chen, Haoran Li, Lihua Li, Xin Yu","doi":"10.1007/s11783-024-1871-9","DOIUrl":null,"url":null,"abstract":"<p>Climate change leads to an increase in both the frequency and intensity of extreme precipitation. Surface runoff generated by extreme precipitation has a significant impact on water. However, the impact of persistent precipitation on surface water quality is easy to neglect, due to its prolonged duration and lower-intensity rainfall. This study established eight sampling points within selected surface waters to observe the variation of microbial characteristics in a typical persistence precipitation event. The primary difference between Furong Lake (FL) and Chengqian Reservoir (CR) was: the concentrations of dissolved organic carbon (DOC) were 21.3 ± 0.7 and 8.3 ± 1.5 mg/L in FL and CR, respectively. The concentrations of R2A culturable bacteria and coliforms were 10<sup>4.57</sup> and 10<sup>1.58</sup> colony-forming units (CFU)/mL in FL, and were 10<sup>5.46</sup> and 10<sup>2.64</sup> CFU/mL in CR, respectively. During precipitation, the maximum increase concentrations of R2A, NA culturable bacteria, and coliforms were 10<sup>0.75</sup>, 10<sup>1.30</sup>, and 10<sup>2.27</sup> CFU/mL in FL, respectively. Furthermore, microbial concentration and rainfall did not increase simultaneously, and a delay phenomenon was observed in the increasing microbial concentrations. Through analyzing the concentration change trends and correlation of various water quality indicators during persistent precipitation, the significant correlation between the DOC concentration and the changes in the dominant species of microbial community structure was found in this study (<i>p</i> < 0.05). For example, as the DOC concentration declined, the abundance of <i>hgcl_clade</i> and <i>CL500-29_marine_group</i> increased. Consequently, although persistent precipitation might not obviously alter the water quality visibly, it could still pose potential microbial risks.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"86 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1871-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change leads to an increase in both the frequency and intensity of extreme precipitation. Surface runoff generated by extreme precipitation has a significant impact on water. However, the impact of persistent precipitation on surface water quality is easy to neglect, due to its prolonged duration and lower-intensity rainfall. This study established eight sampling points within selected surface waters to observe the variation of microbial characteristics in a typical persistence precipitation event. The primary difference between Furong Lake (FL) and Chengqian Reservoir (CR) was: the concentrations of dissolved organic carbon (DOC) were 21.3 ± 0.7 and 8.3 ± 1.5 mg/L in FL and CR, respectively. The concentrations of R2A culturable bacteria and coliforms were 104.57 and 101.58 colony-forming units (CFU)/mL in FL, and were 105.46 and 102.64 CFU/mL in CR, respectively. During precipitation, the maximum increase concentrations of R2A, NA culturable bacteria, and coliforms were 100.75, 101.30, and 102.27 CFU/mL in FL, respectively. Furthermore, microbial concentration and rainfall did not increase simultaneously, and a delay phenomenon was observed in the increasing microbial concentrations. Through analyzing the concentration change trends and correlation of various water quality indicators during persistent precipitation, the significant correlation between the DOC concentration and the changes in the dominant species of microbial community structure was found in this study (p < 0.05). For example, as the DOC concentration declined, the abundance of hgcl_clade and CL500-29_marine_group increased. Consequently, although persistent precipitation might not obviously alter the water quality visibly, it could still pose potential microbial risks.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.