A Computation Framework for LISS-III Analysis Ready Data (ARD) Products for Indian Spatial Data Cube Generation

IF 2.2 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Journal of the Indian Society of Remote Sensing Pub Date : 2024-06-29 DOI:10.1007/s12524-024-01928-9
Ashutosh Kumar Jha, Sanjay Kumar Ghosh, Sameer Saran
{"title":"A Computation Framework for LISS-III Analysis Ready Data (ARD) Products for Indian Spatial Data Cube Generation","authors":"Ashutosh Kumar Jha, Sanjay Kumar Ghosh, Sameer Saran","doi":"10.1007/s12524-024-01928-9","DOIUrl":null,"url":null,"abstract":"<p>The velocity and volume of MultiSpectral (MS) remote sensing data have recently increased exponentially. In recent times, however, the absence of a spatial data cube to store analysis-ready data (ARD) products for the Indian sensors’ data delimits its ready use and depreciates its value. Establishing a framework for storing, managing, and providing online processing ARD products for different sensors is necessary. The current work proposes a framework to produce ARD products by radiometrically correcting the data using the 6 S atmospheric correction and Shepherd Diamond-based terrain correction method to provide normalised surface reflectance. The generated ARD product for LISS-III shows a good correlation with the Planet Lab’s surface reflectance ARD product and an excellent correlation with the SACRS2- a Scheme for Atmospheric Correction of ResourceSat-2 corrected product. A frequency-based geometric correction algorithm provides RMSE of less than half a pixel registration error compared to LANDSAT-8 OLI orthorectified imagery. Finally, A Spatial Data Cube (SDC) with CARD4L metadata standard stores the ARD products post ingestion. The paper explains the complete integrated software development with an end-to-end processing chain of LISS III, an Indian optical sensor data.</p>","PeriodicalId":17510,"journal":{"name":"Journal of the Indian Society of Remote Sensing","volume":"343 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Society of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12524-024-01928-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The velocity and volume of MultiSpectral (MS) remote sensing data have recently increased exponentially. In recent times, however, the absence of a spatial data cube to store analysis-ready data (ARD) products for the Indian sensors’ data delimits its ready use and depreciates its value. Establishing a framework for storing, managing, and providing online processing ARD products for different sensors is necessary. The current work proposes a framework to produce ARD products by radiometrically correcting the data using the 6 S atmospheric correction and Shepherd Diamond-based terrain correction method to provide normalised surface reflectance. The generated ARD product for LISS-III shows a good correlation with the Planet Lab’s surface reflectance ARD product and an excellent correlation with the SACRS2- a Scheme for Atmospheric Correction of ResourceSat-2 corrected product. A frequency-based geometric correction algorithm provides RMSE of less than half a pixel registration error compared to LANDSAT-8 OLI orthorectified imagery. Finally, A Spatial Data Cube (SDC) with CARD4L metadata standard stores the ARD products post ingestion. The paper explains the complete integrated software development with an end-to-end processing chain of LISS III, an Indian optical sensor data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于印度空间数据立方体生成的 LISS-III 分析就绪数据 (ARD) 产品的计算框架
多光谱(MS)遥感数据的速度和数量近来呈指数增长。然而,近来缺乏一个空间数据立方体来存储印度传感器数据的分析就绪数据(ARD)产品,从而限制了这些数据的随时使用并降低了其价值。有必要为不同传感器建立一个存储、管理和提供在线处理 ARD 产品的框架。目前的工作提出了一个框架,通过使用 6 S 大气校正和基于 Shepherd Diamond 的地形校正方法对数据进行辐射校正,以提供归一化的表面反射率,从而生成 ARD 产品。为 LISS-III 生成的 ARD 产品与 Planet Lab 的表面反射率 ARD 产品显示出良好的相关性,与 SACRS2- a Scheme for Atmospheric Correction of ResourceSat-2 更正产品显示出极好的相关性。与 LANDSAT-8 OLI 正交校正图像相比,基于频率的几何校正算法提供的 RMSE 值小于半个像素的登记误差。最后,采用 CARD4L 元数据标准的空间数据立方体(SDC)将 ARD 产品存储在摄取后。本文介绍了完整的集成软件开发,以及印度光学传感器数据 LISS III 的端到端处理链。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Indian Society of Remote Sensing
Journal of the Indian Society of Remote Sensing ENVIRONMENTAL SCIENCES-REMOTE SENSING
CiteScore
4.80
自引率
8.00%
发文量
163
审稿时长
7 months
期刊介绍: The aims and scope of the Journal of the Indian Society of Remote Sensing are to help towards advancement, dissemination and application of the knowledge of Remote Sensing technology, which is deemed to include photo interpretation, photogrammetry, aerial photography, image processing, and other related technologies in the field of survey, planning and management of natural resources and other areas of application where the technology is considered to be appropriate, to promote interaction among all persons, bodies, institutions (private and/or state-owned) and industries interested in achieving advancement, dissemination and application of the technology, to encourage and undertake research in remote sensing and related technologies and to undertake and execute all acts which shall promote all or any of the aims and objectives of the Indian Society of Remote Sensing.
期刊最新文献
A Heuristic Approach of Radiometric Calibration for Ocean Colour Sensors: A Case Study Using ISRO’s Ocean Colour Monitor-2 Farmland Extraction from UAV Remote Sensing Images Based on Improved SegFormer Model Self Organizing Map based Land Cover Clustering for Decision-Level Jaccard Index and Block Activity based Pan-Sharpened Images Improved Building Extraction from Remotely Sensed Images by Integration of Encode–Decoder and Edge Enhancement Models Enhancing Change Detection Accuracy in Remote Sensing Images Through Feature Optimization and Game Theory Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1