Jiuhui Li, Zhengfang Wu, Wenxi Lu, Hongshi He, Yaqian He
{"title":"Identification of hydraulic conductivity and groundwater contamination sources with an Unscented Kalman Smoother","authors":"Jiuhui Li, Zhengfang Wu, Wenxi Lu, Hongshi He, Yaqian He","doi":"10.1007/s00477-024-02761-9","DOIUrl":null,"url":null,"abstract":"<p>The identification of groundwater contamination sources (IGCSs) is an important requirement for the remediation and treatment of groundwater contamination. The data assimilation methods such as ensemble Kalman filter (EnKF) and ensemble smoother (ES) have been applied to IGCSs in recent years and obtained good identification results. The unscented kalman filter (UKF) is also a data assimilation method with the potential to simultaneously identify hydraulic conductivity and GCSs. However, when UKF is applied to identify hydraulic conductivity and GCSs, it is necessary to use the observed data at different times separately, which increases the complexity of the update process and this may result in low identification accuracy. ES is a variant of EnKF that updates the system parameters with all observed data in all time periods, which makes ES faster and easier to implement than EnKF. Therefore, inspired by the ES, an unscented kalman smoother (UKS) based on UKF was proposed for simultaneously identifying the hydraulic conductivity and GCSs in this study. The UKS can use the data observed in all time periods simultaneously, while it is also simpler to operate and the calculation speed is faster. Present studies have shown that ES can solve IGCS problems. Thus, ES was also applied to identify the hydraulic conductivity and GCSs in this study, and its identification performance was compared with UKS. In contrast to previous applications of ES to IGCSs, both UKS and ES were set up with stop iteration conditions instead of only performing one update process, and thus both methods applied multiple update processes. The results showed that compared with ES, the identification results obtained by UKS were characterized by greater stability, higher accuracy, and the iterative process required less iteration process and computational time.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"9 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02761-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The identification of groundwater contamination sources (IGCSs) is an important requirement for the remediation and treatment of groundwater contamination. The data assimilation methods such as ensemble Kalman filter (EnKF) and ensemble smoother (ES) have been applied to IGCSs in recent years and obtained good identification results. The unscented kalman filter (UKF) is also a data assimilation method with the potential to simultaneously identify hydraulic conductivity and GCSs. However, when UKF is applied to identify hydraulic conductivity and GCSs, it is necessary to use the observed data at different times separately, which increases the complexity of the update process and this may result in low identification accuracy. ES is a variant of EnKF that updates the system parameters with all observed data in all time periods, which makes ES faster and easier to implement than EnKF. Therefore, inspired by the ES, an unscented kalman smoother (UKS) based on UKF was proposed for simultaneously identifying the hydraulic conductivity and GCSs in this study. The UKS can use the data observed in all time periods simultaneously, while it is also simpler to operate and the calculation speed is faster. Present studies have shown that ES can solve IGCS problems. Thus, ES was also applied to identify the hydraulic conductivity and GCSs in this study, and its identification performance was compared with UKS. In contrast to previous applications of ES to IGCSs, both UKS and ES were set up with stop iteration conditions instead of only performing one update process, and thus both methods applied multiple update processes. The results showed that compared with ES, the identification results obtained by UKS were characterized by greater stability, higher accuracy, and the iterative process required less iteration process and computational time.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.