A moving least square immersed boundary method for SPH with thin-walled rigid structures

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computational Particle Mechanics Pub Date : 2024-06-24 DOI:10.1007/s40571-024-00721-2
Zhuolin Wang, Zichao Jiang, Yi Zhang, Gengchao Yang, Trevor Hocksun Kwan, Yuhui Chen, Qinghe Yao
{"title":"A moving least square immersed boundary method for SPH with thin-walled rigid structures","authors":"Zhuolin Wang,&nbsp;Zichao Jiang,&nbsp;Yi Zhang,&nbsp;Gengchao Yang,&nbsp;Trevor Hocksun Kwan,&nbsp;Yuhui Chen,&nbsp;Qinghe Yao","doi":"10.1007/s40571-024-00721-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel method for smoothed particle hydrodynamics (SPH) with thin-walled rigid structures. Inspired by the direct forcing immersed boundary method, this method employs a moving least square method for the velocity interpolation instead of the linear interpolation. It reduces oscillations due to changing relative positions between fluid grids and structures. It also simplifies thin-walled rigid structure simulations by eliminating the need for multiple layers of boundary particles, and improves computational accuracy and stability in three-dimensional scenarios. Results of the impulsively started plate test demonstrate that the proposed method obtains smooth velocity and pressure, as well as a good match to the references results of the vortex wake development. Results of the flow past cylinder test show that the proposed method avoids mutual interference on both side of the boundary, while accurately calculating the forces acting on structure. By comparing to linear least square direct forcing scheme and the diffusive direction scheme, advantages of lower oscillation and higher accuracy are proven. Results of flow past a sphere further indicate the stability of the proposed method for three-dimensional simulations.\n</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 5","pages":"1981 - 1995"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-024-00721-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel method for smoothed particle hydrodynamics (SPH) with thin-walled rigid structures. Inspired by the direct forcing immersed boundary method, this method employs a moving least square method for the velocity interpolation instead of the linear interpolation. It reduces oscillations due to changing relative positions between fluid grids and structures. It also simplifies thin-walled rigid structure simulations by eliminating the need for multiple layers of boundary particles, and improves computational accuracy and stability in three-dimensional scenarios. Results of the impulsively started plate test demonstrate that the proposed method obtains smooth velocity and pressure, as well as a good match to the references results of the vortex wake development. Results of the flow past cylinder test show that the proposed method avoids mutual interference on both side of the boundary, while accurately calculating the forces acting on structure. By comparing to linear least square direct forcing scheme and the diffusive direction scheme, advantages of lower oscillation and higher accuracy are proven. Results of flow past a sphere further indicate the stability of the proposed method for three-dimensional simulations.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
薄壁刚性结构 SPH 的移动最小平方沉浸边界法
本文提出了一种新的薄壁刚性结构平滑粒子流体力学(SPH)方法。受直接强迫沉浸边界法的启发,该方法采用移动最小平方法进行速度插值,而不是线性插值。它减少了由于流体网格和结构之间相对位置变化引起的振荡。它还通过消除对多层边界颗粒的需求简化了薄壁刚性结构模拟,并提高了三维场景下的计算精度和稳定性。脉冲启动板试验结果表明,所提出的方法可以获得平稳的速度和压力,并与涡流尾流发展的参考结果很好地匹配。流过圆柱体试验的结果表明,提出的方法避免了边界两侧的相互干扰,同时准确计算了作用在结构上的力。通过与线性最小二乘法直接强迫方案和扩散方向方案的比较,证明了该方法具有振荡更小、精度更高的优点。流过球体的结果进一步证明了所提方法在三维模拟中的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
期刊最新文献
Multiscale analysis of elastodynamics of graphene-embedded ceramic composite plates A calibration framework for DEM models based on the stress‒strain curve of uniaxial compressive tests by using the AEO algorithm and several calibration suggestions Four-dimensional lattice spring model for blasting vibration of tunnel surrounding rock Optimization research on the layout of scouring pipes in the slurry shield based on CFD-DEM simulation DEM meso-damage analysis for double-block ballastless track with non-coincident interlayer contact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1