Zhuolin Wang, Zichao Jiang, Yi Zhang, Gengchao Yang, Trevor Hocksun Kwan, Yuhui Chen, Qinghe Yao
{"title":"A moving least square immersed boundary method for SPH with thin-walled rigid structures","authors":"Zhuolin Wang, Zichao Jiang, Yi Zhang, Gengchao Yang, Trevor Hocksun Kwan, Yuhui Chen, Qinghe Yao","doi":"10.1007/s40571-024-00721-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel method for smoothed particle hydrodynamics (SPH) with thin-walled rigid structures. Inspired by the direct forcing immersed boundary method, this method employs a moving least square method for the velocity interpolation instead of the linear interpolation. It reduces oscillations due to changing relative positions between fluid grids and structures. It also simplifies thin-walled rigid structure simulations by eliminating the need for multiple layers of boundary particles, and improves computational accuracy and stability in three-dimensional scenarios. Results of the impulsively started plate test demonstrate that the proposed method obtains smooth velocity and pressure, as well as a good match to the references results of the vortex wake development. Results of the flow past cylinder test show that the proposed method avoids mutual interference on both side of the boundary, while accurately calculating the forces acting on structure. By comparing to linear least square direct forcing scheme and the diffusive direction scheme, advantages of lower oscillation and higher accuracy are proven. Results of flow past a sphere further indicate the stability of the proposed method for three-dimensional simulations.\n</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 5","pages":"1981 - 1995"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-024-00721-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel method for smoothed particle hydrodynamics (SPH) with thin-walled rigid structures. Inspired by the direct forcing immersed boundary method, this method employs a moving least square method for the velocity interpolation instead of the linear interpolation. It reduces oscillations due to changing relative positions between fluid grids and structures. It also simplifies thin-walled rigid structure simulations by eliminating the need for multiple layers of boundary particles, and improves computational accuracy and stability in three-dimensional scenarios. Results of the impulsively started plate test demonstrate that the proposed method obtains smooth velocity and pressure, as well as a good match to the references results of the vortex wake development. Results of the flow past cylinder test show that the proposed method avoids mutual interference on both side of the boundary, while accurately calculating the forces acting on structure. By comparing to linear least square direct forcing scheme and the diffusive direction scheme, advantages of lower oscillation and higher accuracy are proven. Results of flow past a sphere further indicate the stability of the proposed method for three-dimensional simulations.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.