{"title":"Efficient explicit time integration algorithms for non-spherical granular dynamics on group S(3)","authors":"Zonglin Li, Ju Chen, Qiang Tian, Haiyan Hu","doi":"10.1007/s40571-024-00780-5","DOIUrl":null,"url":null,"abstract":"<p>Discrete element method (DEM) is a powerful tool for the dynamic simulation of irregular non-spherical particle systems. The efficient integration of the rotational motions of numerous particles in DEM poses a big challenge. This paper presents six explicit time integration algorithms, comprising three first-order algorithms and three second-order algorithms, for the rotational motions of non-spherical particles based on the theory of unit quaternion group S(3). The proposed algorithms based on Cayley map do not contain any transcendental function and have high efficiency. The numerical examples underscore the superiority of the first-order symplectic Euler Cayley algorithm (SECay) and the second-order central difference Cayley algorithm (CDCay) in terms of both efficiency and accuracy. In the testing cases of granular systems, SECay and CDCay demonstrate approximately 80% reduction in computational time for the time integration part, compared to the improved predictor–corrector direct multiplication method (IPCDM). Therefore, SECay and CDCay emerge as promising tools for non-spherical DEM simulations.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"18 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00780-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Discrete element method (DEM) is a powerful tool for the dynamic simulation of irregular non-spherical particle systems. The efficient integration of the rotational motions of numerous particles in DEM poses a big challenge. This paper presents six explicit time integration algorithms, comprising three first-order algorithms and three second-order algorithms, for the rotational motions of non-spherical particles based on the theory of unit quaternion group S(3). The proposed algorithms based on Cayley map do not contain any transcendental function and have high efficiency. The numerical examples underscore the superiority of the first-order symplectic Euler Cayley algorithm (SECay) and the second-order central difference Cayley algorithm (CDCay) in terms of both efficiency and accuracy. In the testing cases of granular systems, SECay and CDCay demonstrate approximately 80% reduction in computational time for the time integration part, compared to the improved predictor–corrector direct multiplication method (IPCDM). Therefore, SECay and CDCay emerge as promising tools for non-spherical DEM simulations.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.