Molecular dynamics insights on the self-interstitial diffusion in α-Beryllium

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Modelling and Simulation in Materials Science and Engineering Pub Date : 2024-06-27 DOI:10.1088/1361-651x/ad5a2a
Huiming Wang, Jianfeng Jin, Dongxin Wang, Demei Xu, Kaiqi Guo, Peijun Yang and Gaowu Qin
{"title":"Molecular dynamics insights on the self-interstitial diffusion in α-Beryllium","authors":"Huiming Wang, Jianfeng Jin, Dongxin Wang, Demei Xu, Kaiqi Guo, Peijun Yang and Gaowu Qin","doi":"10.1088/1361-651x/ad5a2a","DOIUrl":null,"url":null,"abstract":"Beryllium has some unique properties and plays a key role in many special applications. However, Beryllium (α-Be) is of close-packed hexagonal (HCP) crystal structure, which has a strong anisotropic feature and limits its applications. In this work, diffusion behaviors of the self-interstitial atom (SIA) in α-Be at the temperature of 300–1100 K are studied using molecular dynamics simulations. It is observed that the diffusion mechanisms are not only dominated by the SIA jumps among the BO and BS sites on the basal plane, but also by the jumps among the C and O sites along the c-axis, which strongly depend on temperature. Diffusion behaviors of SIA can be divided into two stages with the temperature of 300–800 K and 800–1100 K, respectively, in which diffusion coefficient component of the c-axis (Dc) is higher than that of the basal plane (Db) at first and then becomes closer to the Db after 800 K, in consistent with diffusion mechanisms. When the temperature rises from 300 K to 1100 K, the total diffusion coefficient of SIA (Dt) increases gradually from 0.34 × 10−4 cm2 s−1 to 1.13 × 10−4 cm2 s−1. With the temperature increasing from 300 K to 1100 K, the anisotropy factor (η = Dc/Db) of SIA diffusion drastically decreases from 1.76 to 1.01 in α-Be, while the η increases from 0.21 to 0.70 in α-Zr with the temperature from 500 K to 1100 K.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"43 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad5a2a","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Beryllium has some unique properties and plays a key role in many special applications. However, Beryllium (α-Be) is of close-packed hexagonal (HCP) crystal structure, which has a strong anisotropic feature and limits its applications. In this work, diffusion behaviors of the self-interstitial atom (SIA) in α-Be at the temperature of 300–1100 K are studied using molecular dynamics simulations. It is observed that the diffusion mechanisms are not only dominated by the SIA jumps among the BO and BS sites on the basal plane, but also by the jumps among the C and O sites along the c-axis, which strongly depend on temperature. Diffusion behaviors of SIA can be divided into two stages with the temperature of 300–800 K and 800–1100 K, respectively, in which diffusion coefficient component of the c-axis (Dc) is higher than that of the basal plane (Db) at first and then becomes closer to the Db after 800 K, in consistent with diffusion mechanisms. When the temperature rises from 300 K to 1100 K, the total diffusion coefficient of SIA (Dt) increases gradually from 0.34 × 10−4 cm2 s−1 to 1.13 × 10−4 cm2 s−1. With the temperature increasing from 300 K to 1100 K, the anisotropy factor (η = Dc/Db) of SIA diffusion drastically decreases from 1.76 to 1.01 in α-Be, while the η increases from 0.21 to 0.70 in α-Zr with the temperature from 500 K to 1100 K.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于α-铍中自间隙扩散的分子动力学见解
铍具有一些独特的性质,在许多特殊应用中发挥着关键作用。然而,铍(α-Be)为密堆积六方(HCP)晶体结构,具有很强的各向异性,限制了其应用。本文利用分子动力学模拟研究了 300-1100 K 温度下 α-Be 中自间隙原子(SIA)的扩散行为。结果表明,扩散机制不仅受基底面上 BO 和 BS 位点之间的 SIA 跃迁的支配,而且还受沿 c 轴的 C 和 O 位点之间的跃迁的支配,而这些跃迁与温度密切相关。SIA 的扩散行为可分为两个阶段,温度分别为 300-800 K 和 800-1100 K,其中 c 轴的扩散系数分量(Dc)最初高于基底面的扩散系数分量(Db),800 K 之后则逐渐接近于 Db,这与扩散机制一致。当温度从 300 K 上升到 1100 K 时,SIA 的总扩散系数(Dt)从 0.34 × 10-4 cm2 s-1 逐渐增加到 1.13 × 10-4 cm2 s-1。随着温度从 300 K 升至 1100 K,SIA 扩散的各向异性因子(η = Dc/Db)在 α-Be 中从 1.76 急剧下降至 1.01,而在α-Zr 中,随着温度从 500 K 升至 1100 K,η 从 0.21 增至 0.70。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
期刊最新文献
Plastic deformation mechanism of γ phase Fe–Cr alloy revealed by molecular dynamics simulations A nonlinear phase-field model of corrosion with charging kinetics of electric double layer Effect of helium bubbles on the mobility of edge dislocations in copper Mechanical-electric-magnetic-thermal coupled enriched finite element method for magneto-electro-elastic structures Molecular dynamics simulations of high-energy radiation damage in hcp-titanium considering electronic effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1