{"title":"Mustang: Improving QoE for Real-Time Video in Cellular Networks by Masking Jitter","authors":"Encheng Yu, Jianer Zhou, Zhenyu Li, Gareth Tyson, Weichao Li, Xinyi Zhang, Zhiwei Xu, Gaogang Xie","doi":"10.1145/3672399","DOIUrl":null,"url":null,"abstract":"<p>The advent of 5G and interactive live broadcasting has led to a growing trend of people preferring real-time interactive video services on mobile devices, particularly mobile phones. In this work, we measure the performance of Google congestion control (GCC) in cellular networks, which is the default congestion control algorithm for Web Real-Time Communications (WebRTC). Our measurements show that GCC sometimes makes bitrate decisions which are harmful to quality of experience (QoE) in cellular networks with high jitter. We further find that the frame delivery time (FDT) in the player can mitigate network jitter and maintain QoE. Moreover, the receiving rate is better to reflect the network congestion than RTT in cellular networks. Based on these measurements and findings, we propose Mustang, an algorithm designed to overcome the jitter in cellular networks. Mustang makes use of the FDT and receiving rate as feedback information to the sender. Then the sender adjusts its sending rate based on the information to guarantee QoE. We have implemented Mustang in WebRTC and evaluated it in both emulated and real cellular networks. The experimental results show that Mustang can improve WebRTC’s both QoS and QoE performance. For QoS, Mustang increases the sending rate by 72.1% and has similar RTT and packet loss when compared with GCC, while it is about 30% better for QoE.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"15 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3672399","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of 5G and interactive live broadcasting has led to a growing trend of people preferring real-time interactive video services on mobile devices, particularly mobile phones. In this work, we measure the performance of Google congestion control (GCC) in cellular networks, which is the default congestion control algorithm for Web Real-Time Communications (WebRTC). Our measurements show that GCC sometimes makes bitrate decisions which are harmful to quality of experience (QoE) in cellular networks with high jitter. We further find that the frame delivery time (FDT) in the player can mitigate network jitter and maintain QoE. Moreover, the receiving rate is better to reflect the network congestion than RTT in cellular networks. Based on these measurements and findings, we propose Mustang, an algorithm designed to overcome the jitter in cellular networks. Mustang makes use of the FDT and receiving rate as feedback information to the sender. Then the sender adjusts its sending rate based on the information to guarantee QoE. We have implemented Mustang in WebRTC and evaluated it in both emulated and real cellular networks. The experimental results show that Mustang can improve WebRTC’s both QoS and QoE performance. For QoS, Mustang increases the sending rate by 72.1% and has similar RTT and packet loss when compared with GCC, while it is about 30% better for QoE.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.