Student understanding of eigenvalue equations in quantum mechanics: Symbolic blending and sensemaking analysis

IF 2.6 2区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH Physical Review Physics Education Research Pub Date : 2024-06-18 DOI:10.1103/physrevphyseducres.20.010153
A. R. Piña, Zeynep Topdemir, John R. Thompson
{"title":"Student understanding of eigenvalue equations in quantum mechanics: Symbolic blending and sensemaking analysis","authors":"A. R. Piña, Zeynep Topdemir, John R. Thompson","doi":"10.1103/physrevphyseducres.20.010153","DOIUrl":null,"url":null,"abstract":"As part of an effort to examine students’ mathematical sensemaking (MSM) in a spins-first quantum mechanics course during the transition from discrete (spin) to continuous (position) systems, students were asked to construct an eigenvalue equation for a one-dimensional position operator. A subset of responses took the general form of an eigenvalue equation written in Dirac notation. Symbolic blending, a combination of symbolic forms and conceptual blending, as well as a categorical framework for MSM, were used in the analysis. The data suggest two different symbolic forms for an eigenvalue equation that share a symbol template but have distinct conceptual schemata: A transformation that reproduces the original and to operate is to act. These symbolic forms, when blended with two sets of contextual knowledge, form the basis of three different interpretations of eigenvalue equations modeled here as conceptual blends. The analysis in this study serves as a novel example of, and preliminary evidence for, student engagement in sensemaking activities in the transition from discrete to continuous systems in a spins-first quantum mechanics course.","PeriodicalId":54296,"journal":{"name":"Physical Review Physics Education Research","volume":"8 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Physics Education Research","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1103/physrevphyseducres.20.010153","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

As part of an effort to examine students’ mathematical sensemaking (MSM) in a spins-first quantum mechanics course during the transition from discrete (spin) to continuous (position) systems, students were asked to construct an eigenvalue equation for a one-dimensional position operator. A subset of responses took the general form of an eigenvalue equation written in Dirac notation. Symbolic blending, a combination of symbolic forms and conceptual blending, as well as a categorical framework for MSM, were used in the analysis. The data suggest two different symbolic forms for an eigenvalue equation that share a symbol template but have distinct conceptual schemata: A transformation that reproduces the original and to operate is to act. These symbolic forms, when blended with two sets of contextual knowledge, form the basis of three different interpretations of eigenvalue equations modeled here as conceptual blends. The analysis in this study serves as a novel example of, and preliminary evidence for, student engagement in sensemaking activities in the transition from discrete to continuous systems in a spins-first quantum mechanics course.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学生对量子力学中特征值方程的理解:符号混合和感性分析
在自旋第一量子力学课程中,为了考察学生从离散(自旋)系统到连续(位置)系统过渡期间的数学感知(MSM),要求学生构建一维位置算子的特征值方程。一部分回答采用了用狄拉克符号书写的特征值方程的一般形式。分析中使用了符号混合、符号形式和概念混合的组合以及 MSM 的分类框架。数据表明,特征值方程有两种不同的符号形式,它们共享一个符号模板,但具有不同的概念图式:一种是再现原式的变换,另一种是操作即行动。这些符号形式与两组情境知识相融合,构成了对特征值方程的三种不同解释的基础,并在此作为概念混合模型。本研究的分析是一个新颖的例子,初步证明了在自旋第一量子力学课程中,学生在从离散系统向连续系统过渡的过程中参与了感性认识活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review Physics Education Research
Physical Review Physics Education Research Social Sciences-Education
CiteScore
5.70
自引率
41.90%
发文量
84
审稿时长
32 weeks
期刊介绍: PRPER covers all educational levels, from elementary through graduate education. All topics in experimental and theoretical physics education research are accepted, including, but not limited to: Educational policy Instructional strategies, and materials development Research methodology Epistemology, attitudes, and beliefs Learning environment Scientific reasoning and problem solving Diversity and inclusion Learning theory Student participation Faculty and teacher professional development
期刊最新文献
Erratum: Development and validation of a conceptual multiple-choice survey instrument to assess student understanding of introductory thermodynamics [Phys. Rev. Phys. Educ. Res. 19, 020112 (2023)] Reinforcing mindware or supporting cognitive reflection: Testing two strategies for addressing a persistent learning challenge in the context of air resistance How women and lesbian, gay, bisexual, transgender, and queer physics doctoral students navigate graduate education: The roles of professional environments and social networks Evolving study strategies and support structures of introductory physics students Effectiveness of conceptual-framework-based instruction on promoting knowledge integration in learning simple electric circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1