{"title":"On the Origin of Sungrazing Comet Groups","authors":"A. S. Guliyev, R. A. Guliyev","doi":"10.3103/S0884591324030048","DOIUrl":null,"url":null,"abstract":"<p>Statistical dependences of orbit parameters in four groups of sungrazing comets are studied. It is shown that the perihelia of comets of the Kreutz family are clustered around two planes (great circles of the celestial sphere). Numerical data on the observed bifurcation of perihelion distribution are provided. One of the planes basically coincides with the plane obtained by averaging orbit parameters Ω and <i>i</i>. The second plane with parameters Ω<sub><i>p</i></sub> = 77.7° and <i>i</i><sub><i>p</i></sub> = 266.1° has an inclination of approximately 64° relative to the first plane. The distant nodes of cometary orbits relative to this plane are clustered at a distance of approximately 2 a.u. On the basis of the above, one of the authors hypothesizes that the comet group originates from the collision of a large comet with a meteoroid stream. This study examines some counterarguments expressed regarding this hypothesis. It is shown, based on a particular case, that the assumptions about the concentration of comet perihelia near one point and along two circles of the celestial sphere are quite compatible. The distribution of orbit inclinations relative to this plane is analyzed and a sharp maximum near 90° is noted. The maximum indicates that the parent body experienced lateral impacts of meteoroid bodies in all probability, which caused defragmentation of the former. New confirmations of the suggested hypothesis about the presence of another group of sungrazers have been found. It is assumed that the correlation dependence between the values of the perihelion parameters and ascending nodes of cometary orbits is of an evolutionary nature and is related to the group formation process. New relationships that concern the Meyer, Kracht, and Marsden groups are introduced. In particular, the authors have calculated the planes near which the cometary perihelia of these groups are concentrated. The example of the Meyer group illustrates the bifurcation of perihelia.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 3","pages":"172 - 185"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591324030048","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Statistical dependences of orbit parameters in four groups of sungrazing comets are studied. It is shown that the perihelia of comets of the Kreutz family are clustered around two planes (great circles of the celestial sphere). Numerical data on the observed bifurcation of perihelion distribution are provided. One of the planes basically coincides with the plane obtained by averaging orbit parameters Ω and i. The second plane with parameters Ωp = 77.7° and ip = 266.1° has an inclination of approximately 64° relative to the first plane. The distant nodes of cometary orbits relative to this plane are clustered at a distance of approximately 2 a.u. On the basis of the above, one of the authors hypothesizes that the comet group originates from the collision of a large comet with a meteoroid stream. This study examines some counterarguments expressed regarding this hypothesis. It is shown, based on a particular case, that the assumptions about the concentration of comet perihelia near one point and along two circles of the celestial sphere are quite compatible. The distribution of orbit inclinations relative to this plane is analyzed and a sharp maximum near 90° is noted. The maximum indicates that the parent body experienced lateral impacts of meteoroid bodies in all probability, which caused defragmentation of the former. New confirmations of the suggested hypothesis about the presence of another group of sungrazers have been found. It is assumed that the correlation dependence between the values of the perihelion parameters and ascending nodes of cometary orbits is of an evolutionary nature and is related to the group formation process. New relationships that concern the Meyer, Kracht, and Marsden groups are introduced. In particular, the authors have calculated the planes near which the cometary perihelia of these groups are concentrated. The example of the Meyer group illustrates the bifurcation of perihelia.
期刊介绍:
Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.