Evaluation of the fixed-point iteration of minimizing delta debugging

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Journal of Software-Evolution and Process Pub Date : 2024-06-23 DOI:10.1002/smr.2702
Dániel Vince, Ákos Kiss
{"title":"Evaluation of the fixed-point iteration of minimizing delta debugging","authors":"Dániel Vince,&nbsp;Ákos Kiss","doi":"10.1002/smr.2702","DOIUrl":null,"url":null,"abstract":"<p>The minimizing Delta Debugging (DDMIN) was among the first algorithms designed to automate the task of reducing test cases. Its popularity is based on the characteristics that it works on any kind of input, without knowledge about the input structure. Several studies proved that smaller outputs can be produced faster with more advanced techniques (e.g., building a tree representation of the input and reducing that data structure); however, if the structure is unknown or changing frequently, maintaining the descriptors might not be resource-efficient. Therefore, in this paper, we focus on the evaluation of the novel fixed-point iteration of minimizing Delta Debugging (DDMIN*) on publicly available test suites related to software engineering. Our experiments show that DDMIN* can help reduce inputs further by 48.08% on average compared to DDMIN (using lines as the units of the reduction). Although the effectiveness of the algorithm improved, it comes with the cost of additional testing steps. This study shows how the characteristics of the input affect the results and when it pays off using DDMIN*.</p>","PeriodicalId":48898,"journal":{"name":"Journal of Software-Evolution and Process","volume":"36 10","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Software-Evolution and Process","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smr.2702","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The minimizing Delta Debugging (DDMIN) was among the first algorithms designed to automate the task of reducing test cases. Its popularity is based on the characteristics that it works on any kind of input, without knowledge about the input structure. Several studies proved that smaller outputs can be produced faster with more advanced techniques (e.g., building a tree representation of the input and reducing that data structure); however, if the structure is unknown or changing frequently, maintaining the descriptors might not be resource-efficient. Therefore, in this paper, we focus on the evaluation of the novel fixed-point iteration of minimizing Delta Debugging (DDMIN*) on publicly available test suites related to software engineering. Our experiments show that DDMIN* can help reduce inputs further by 48.08% on average compared to DDMIN (using lines as the units of the reduction). Although the effectiveness of the algorithm improved, it comes with the cost of additional testing steps. This study shows how the characteristics of the input affect the results and when it pays off using DDMIN*.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对最小化三角调试的定点迭代进行评估
最小化三角洲调试(DDMIN)是最早为自动减少测试用例而设计的算法之一。它之所以广受欢迎,是因为它可以在不了解输入结构的情况下对任何类型的输入进行处理。一些研究证明,使用更先进的技术(例如,建立输入的树形表示并减少该数据结构)可以更快地生成更小的输出;但是,如果结构未知或经常变化,维护描述符可能并不节约资源。因此,在本文中,我们将重点在与软件工程相关的公开测试套件上评估最小化三角调试(DDMIN*)的新型定点迭代。我们的实验表明,与 DDMIN 相比,DDMIN* 可以帮助进一步减少输入,平均减少 48.08%(使用行作为减少的单位)。虽然该算法的有效性有所提高,但也付出了额外测试步骤的代价。这项研究显示了输入的特性如何影响结果,以及何时使用 DDMIN* 能带来收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Software-Evolution and Process
Journal of Software-Evolution and Process COMPUTER SCIENCE, SOFTWARE ENGINEERING-
自引率
10.00%
发文量
109
期刊最新文献
Issue Information Issue Information Issue Information A hybrid‐ensemble model for software defect prediction for balanced and imbalanced datasets using AI‐based techniques with feature preservation: SMERKP‐XGB Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1