Topical application of a CCL22-binding aptamer suppresses contact allergy

IF 6.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Therapy. Nucleic Acids Pub Date : 2024-06-17 DOI:10.1016/j.omtn.2024.102254
Anna Jonczyk, Marlene Gottschalk, Matthew S.J. Mangan, Yasmin Majlesain, Manja W. Thiem, Lea-Corinna Burbaum, Heike Weighardt, Eicke Latz, Günter Mayer, Irmgard Förster
{"title":"Topical application of a CCL22-binding aptamer suppresses contact allergy","authors":"Anna Jonczyk, Marlene Gottschalk, Matthew S.J. Mangan, Yasmin Majlesain, Manja W. Thiem, Lea-Corinna Burbaum, Heike Weighardt, Eicke Latz, Günter Mayer, Irmgard Förster","doi":"10.1016/j.omtn.2024.102254","DOIUrl":null,"url":null,"abstract":"Allergic contact dermatitis is a prevalent occupational disease with limited therapeutic options. The chemokine CCL22, a ligand of the chemokine receptor CCR4, directs the migration of immune cells. Here, it is shown that genetic deficiency of CCL22 effectively ameliorated allergic reactions in contact hypersensitivity (CHS), a commonly used mouse model of allergic contact dermatitis. For the pharmacological inhibition of CCL22, DNA aptamers specific for murine CCL22 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). Nine CCL22-binding aptamers were initially selected and functionally tested . The 29-nt DNA aptamer AJ102.29m profoundly inhibited CCL22-dependent T cell migration and did not elicit undesired Toll-like receptor-dependent immune activation. AJ102.29m efficiently ameliorated CHS after systemic application. Moreover, CHS-associated allergic symptoms were also reduced following topical application of the aptamer on the skin. Microscopic analysis of skin treated with AJ102.29m demonstrated that the aptamer could penetrate into the epidermis and dermis. The finding that epicutaneous application of the aptamer AJ102.29m in a cream was as effective in suppressing the allergic reaction as intraperitoneal injection paves the way for therapeutic use of aptamers beyond the current routes of systemic administration.","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"157 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2024.102254","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Allergic contact dermatitis is a prevalent occupational disease with limited therapeutic options. The chemokine CCL22, a ligand of the chemokine receptor CCR4, directs the migration of immune cells. Here, it is shown that genetic deficiency of CCL22 effectively ameliorated allergic reactions in contact hypersensitivity (CHS), a commonly used mouse model of allergic contact dermatitis. For the pharmacological inhibition of CCL22, DNA aptamers specific for murine CCL22 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). Nine CCL22-binding aptamers were initially selected and functionally tested . The 29-nt DNA aptamer AJ102.29m profoundly inhibited CCL22-dependent T cell migration and did not elicit undesired Toll-like receptor-dependent immune activation. AJ102.29m efficiently ameliorated CHS after systemic application. Moreover, CHS-associated allergic symptoms were also reduced following topical application of the aptamer on the skin. Microscopic analysis of skin treated with AJ102.29m demonstrated that the aptamer could penetrate into the epidermis and dermis. The finding that epicutaneous application of the aptamer AJ102.29m in a cream was as effective in suppressing the allergic reaction as intraperitoneal injection paves the way for therapeutic use of aptamers beyond the current routes of systemic administration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部应用与 CCL22 结合的适配体能抑制接触性过敏
过敏性接触性皮炎是一种常见的职业病,但治疗方法却很有限。趋化因子 CCL22 是趋化因子受体 CCR4 的配体,可引导免疫细胞迁移。研究表明,遗传性 CCL22 缺乏能有效改善接触性过敏(CHS)的过敏反应,CHS 是一种常用的过敏性接触性皮炎小鼠模型。为了对 CCL22 进行药理抑制,研究人员通过指数富集配体的系统进化(SELEX)生成了特异于小鼠 CCL22 的 DNA 配体。初步筛选出九种与 CCL22 结合的适配体,并进行了功能测试。29nt的DNA适配体AJ102.29m能有效抑制CCL22依赖的T细胞迁移,并且不会引起Toll样受体依赖的不良免疫激活。全身应用 AJ102.29m 能有效改善 CHS。此外,在皮肤上局部应用该合剂后,CHS 相关的过敏症状也有所减轻。对使用 AJ102.29m 处理过的皮肤进行的显微分析表明,该合道体能渗入表皮和真皮层。在抑制过敏反应方面,表皮涂抹乳膏中的适配体 AJ102.29m 与腹腔注射一样有效,这一发现为适配体在目前全身给药途径之外的治疗用途铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy. Nucleic Acids
Molecular Therapy. Nucleic Acids MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
15.40
自引率
1.10%
发文量
336
审稿时长
20 weeks
期刊介绍: Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.
期刊最新文献
Retraction Notice to: Promotion of tumor progression by exosome transmission of circular RNA circSKA3. siRNA tackles cancer: Immune checkpoint inhibitors and siRNA combinations. miR-125b differentially impacts mineralization in dexamethasone and calcium-treated human mesenchymal stem cells. Unleashing the TLR9-driven multilineage differentiation of myeloid leukemia cells in vivo. Extracellular viral microRNAs as biomarkers of virus infection in human cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1