Different-Scale Heterogeneities in Segments of Active Faults and Their Influence on Slip Modes

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Physical Mesomechanics Pub Date : 2024-06-21 DOI:10.1134/S1029959924030019
V. V. Ruzhich, G. G. Kocharyan, A. A. Ostapchuk, E. V. Shilko
{"title":"Different-Scale Heterogeneities in Segments of Active Faults and Their Influence on Slip Modes","authors":"V. V. Ruzhich,&nbsp;G. G. Kocharyan,&nbsp;A. A. Ostapchuk,&nbsp;E. V. Shilko","doi":"10.1134/S1029959924030019","DOIUrl":null,"url":null,"abstract":"<p>The paper presents some multidisciplinary research results on the structure of slip surfaces in segments of tectonic faults in the Baikal region and Mongolia. The properties of subsurface (modern) and deep slickensides exposed after many-kilometer denudation of the Earth’s upper crust are studied at different levels—from macroscale to nanocrystals. Other types of heterogeneities characterizing the structure of fault slip zones are also considered. The presented data indicate a heterogeneous structure of tectonic faults. Their slip zones show both low-friction regions where strong mineral phases are replaced by weak minerals and potentially unstable spots with high friction resistance. Results of the comprehensive study of geological conditions under which different-scale heterogeneities emerge in exhumed fault segments should be taken into account when developing rock mass models suitable for numerical simulation of earthquake preparation processes at the micro-, meso- and macroscales.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 3","pages":"217 - 228"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924030019","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents some multidisciplinary research results on the structure of slip surfaces in segments of tectonic faults in the Baikal region and Mongolia. The properties of subsurface (modern) and deep slickensides exposed after many-kilometer denudation of the Earth’s upper crust are studied at different levels—from macroscale to nanocrystals. Other types of heterogeneities characterizing the structure of fault slip zones are also considered. The presented data indicate a heterogeneous structure of tectonic faults. Their slip zones show both low-friction regions where strong mineral phases are replaced by weak minerals and potentially unstable spots with high friction resistance. Results of the comprehensive study of geological conditions under which different-scale heterogeneities emerge in exhumed fault segments should be taken into account when developing rock mass models suitable for numerical simulation of earthquake preparation processes at the micro-, meso- and macroscales.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
活动断层段的不同尺度异质性及其对滑移模式的影响
摘要 本文介绍了有关贝加尔地区和蒙古构造断层段滑动面结构的一些多学科研究成果。本文从宏观到纳米晶体等不同层面研究了地壳上部多公里剥蚀后暴露出的次表层(现代)和深层滑动面的特性。此外,还考虑了表征断层滑动带结构的其他类型的异质性。所提供的数据表明构造断层具有异质结构。断层滑动带既有强矿物相被弱矿物相取代的低摩擦区域,也有高摩擦阻力的潜在不稳定区域。在开发适用于微观、中观和宏观地震准备过程数值模拟的岩体模型时,应考虑对出露断层段出现不同尺度异质性的地质条件进行综合研究的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
期刊最新文献
Evaluation of the Effective Mechanical Properties of a Particle-Reinforced Polymer Composite with Low-Modulus Inclusions Absorption of Impact and Shear Energy by Crystal Lattices of Mechanically Activated Inorganic Substances: A Review Multiscale Modeling and Computer-Aided Design of Advanced Materials with Hierarchical Structure Microstructural Deformation and Fracture of Reduced Activation Ferritic-Martensitic Steel EK-181 under Different Heat Treatment Conditions Synthesis of Porous Composites Based on Electroexplosive Ti/Al Nanopowder for Bone Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1