Self-absorption in solar surge as observed by IRIS

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astrophysics and Space Science Pub Date : 2024-06-21 DOI:10.1007/s10509-024-04323-5
B. Suresh Babu, Pradeep Kayshap, Sharad C. Tripathi
{"title":"Self-absorption in solar surge as observed by IRIS","authors":"B. Suresh Babu,&nbsp;Pradeep Kayshap,&nbsp;Sharad C. Tripathi","doi":"10.1007/s10509-024-04323-5","DOIUrl":null,"url":null,"abstract":"<div><p>Solar surges are collimated flows of plasma that occur in the periphery of active regions (ARs). The kinematics, physical properties, and triggering mechanisms of a solar surge were studied through imaging and spectroscopic diagnosis. The surge has a typical inverted Y-shape, and it moves with a speed of more than 200 km/s in the transition-region (TR) which is much higher than the sound speed of TR. The observational findings suggest that the surge was triggered due to magnetic reconnection. In addition, a hot jet formed after around 03 minutes and propagated at a speed that is comparable to the sound speed of the corona. Hence, most probably, the hot jet forms due to the chromospheric evaporation. The spectroscopic diagnosis reveals that electron densities are log<sub>10</sub> 10.82±0.90 and log<sub>10</sub> 9.93±1.27 in the base and spire of the surge, respectively. Further, it is found that the Si <span>iv</span> line ratio is around 1.85 in the base and 1.80 in the spire of the surge. Hence, we say that most of the Si <span>iv</span> profiles are forming under optically thick conditions in the surge. Most importantly, some Si <span>iv</span> spectral profiles from the base and spire of the surge are double peak profiles with a dip close to the central wavelength. Also, in the same region, optically thick conditions exist, therefore, most probably, the central dip in the profiles is a result of the self-absorption. This is the first-ever report of self-absorption in the solar surges.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04323-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Solar surges are collimated flows of plasma that occur in the periphery of active regions (ARs). The kinematics, physical properties, and triggering mechanisms of a solar surge were studied through imaging and spectroscopic diagnosis. The surge has a typical inverted Y-shape, and it moves with a speed of more than 200 km/s in the transition-region (TR) which is much higher than the sound speed of TR. The observational findings suggest that the surge was triggered due to magnetic reconnection. In addition, a hot jet formed after around 03 minutes and propagated at a speed that is comparable to the sound speed of the corona. Hence, most probably, the hot jet forms due to the chromospheric evaporation. The spectroscopic diagnosis reveals that electron densities are log10 10.82±0.90 and log10 9.93±1.27 in the base and spire of the surge, respectively. Further, it is found that the Si iv line ratio is around 1.85 in the base and 1.80 in the spire of the surge. Hence, we say that most of the Si iv profiles are forming under optically thick conditions in the surge. Most importantly, some Si iv spectral profiles from the base and spire of the surge are double peak profiles with a dip close to the central wavelength. Also, in the same region, optically thick conditions exist, therefore, most probably, the central dip in the profiles is a result of the self-absorption. This is the first-ever report of self-absorption in the solar surges.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IRIS 观测到的太阳激波自吸收现象
太阳激波是发生在活动区(ARs)外围的等离子体准直流。通过成像和光谱诊断研究了太阳激波的运动学、物理特性和触发机制。浪涌呈典型的倒 Y 形,在过渡区(TR)的运动速度超过 200 公里/秒,远高于过渡区的声速。观测结果表明,浪涌是由磁重联引发的。此外,约 03 分钟后形成了热喷流,其传播速度与日冕的声速相当。因此,热喷流很可能是由于色球层蒸发而形成的。光谱诊断显示,浪涌底部和尖顶的电子密度分别为 log10 10.82±0.90 和 log10 9.93±1.27。此外,还发现浪涌底部和尖顶的 Si iv 线比率分别为 1.85 和 1.80 左右。因此,我们可以说大部分 Si iv 剖面是在涌流的光学厚度条件下形成的。最重要的是,浪涌底部和尖顶的一些 Si iv 光谱剖面是双峰剖面,其倾角接近中心波长。此外,在同一区域还存在光厚条件,因此很可能是自吸收导致了剖面的中心凹陷。这是首次报告日涌中的自吸收现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
期刊最新文献
Images in axially symmetric gravitational lenses from elliptical sources: the elimination method Following the tidal trail: a history of modeling the Magellanic Stream Investigation of non-substorm Pi2 magnetic pulsation during solar flare event Resolved stellar populations as a key to unlocking the formation and evolution of galaxies A real-time solar flare forecasting system with deep learning methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1