Duncan R. Lorimer, Maura A. McLaughlin, Matthew Bailes
{"title":"The discovery and significance of fast radio bursts","authors":"Duncan R. Lorimer, Maura A. McLaughlin, Matthew Bailes","doi":"10.1007/s10509-024-04322-6","DOIUrl":null,"url":null,"abstract":"<div><p>In 2007 we were part of a team that discovered the so-called “Lorimer Burst”, the first example of a new class of objects now known as fast radio bursts (FRBs). These enigmatic events are only a few ms in duration and occur at random locations on the sky at a rate of a few thousand per day. Several thousand FRBs are currently known. While it is now well established that they have a cosmological origin, and about 10% of all currently known sources have been seen to exhibit multiple bursts, the origins of these enigmatic sources are currently poorly understood. In this article, we review the discovery of FRBs and present some of the highlights from the vast body of work by an international community. Following a brief overview of the scale of the visible Universe in §1, we describe the key moments in radio astronomy (§2) that led up to the discovery of the Lorimer burst (§3). Early efforts to find more FRBs are described in §4 which led to the discovery of the first repeating source (§5). In §6, as we close out on the second decade of FRBs, we outline some of the many open questions in the field and look ahead to the coming years where many surprises are surely in store.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10509-024-04322-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04322-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In 2007 we were part of a team that discovered the so-called “Lorimer Burst”, the first example of a new class of objects now known as fast radio bursts (FRBs). These enigmatic events are only a few ms in duration and occur at random locations on the sky at a rate of a few thousand per day. Several thousand FRBs are currently known. While it is now well established that they have a cosmological origin, and about 10% of all currently known sources have been seen to exhibit multiple bursts, the origins of these enigmatic sources are currently poorly understood. In this article, we review the discovery of FRBs and present some of the highlights from the vast body of work by an international community. Following a brief overview of the scale of the visible Universe in §1, we describe the key moments in radio astronomy (§2) that led up to the discovery of the Lorimer burst (§3). Early efforts to find more FRBs are described in §4 which led to the discovery of the first repeating source (§5). In §6, as we close out on the second decade of FRBs, we outline some of the many open questions in the field and look ahead to the coming years where many surprises are surely in store.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.