Tutor auditory memory for guiding sensorimotor learning in birdsong

IF 3.4 3区 医学 Q2 NEUROSCIENCES Frontiers in Neural Circuits Pub Date : 2024-07-01 DOI:10.3389/fncir.2024.1431119
Yoko Yazaki-Sugiyama
{"title":"Tutor auditory memory for guiding sensorimotor learning in birdsong","authors":"Yoko Yazaki-Sugiyama","doi":"10.3389/fncir.2024.1431119","DOIUrl":null,"url":null,"abstract":"Memory-guided motor shaping is necessary for sensorimotor learning. Vocal learning, such as speech development in human babies and song learning in bird juveniles, begins with the formation of an auditory template by hearing adult voices followed by vocally matching to the memorized template using auditory feedback. In zebra finches, the widely used songbird model system, only males develop individually unique stereotyped songs. The production of normal songs relies on auditory experience of tutor’s songs (commonly their father’s songs) during a critical period in development that consists of orchestrated auditory and sensorimotor phases. “Auditory templates” of tutor songs are thought to form in the brain to guide later vocal learning, while formation of “motor templates” of own song has been suggested to be necessary for the maintenance of stereotyped adult songs. Where these templates are formed in the brain and how they interact with other brain areas to guide song learning, presumably with template-matching error correction, remains to be clarified. Here, we review and discuss studies on auditory and motor templates in the avian brain. We suggest that distinct auditory and motor template systems exist that switch their functions during development.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neural Circuits","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncir.2024.1431119","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Memory-guided motor shaping is necessary for sensorimotor learning. Vocal learning, such as speech development in human babies and song learning in bird juveniles, begins with the formation of an auditory template by hearing adult voices followed by vocally matching to the memorized template using auditory feedback. In zebra finches, the widely used songbird model system, only males develop individually unique stereotyped songs. The production of normal songs relies on auditory experience of tutor’s songs (commonly their father’s songs) during a critical period in development that consists of orchestrated auditory and sensorimotor phases. “Auditory templates” of tutor songs are thought to form in the brain to guide later vocal learning, while formation of “motor templates” of own song has been suggested to be necessary for the maintenance of stereotyped adult songs. Where these templates are formed in the brain and how they interact with other brain areas to guide song learning, presumably with template-matching error correction, remains to be clarified. Here, we review and discuss studies on auditory and motor templates in the avian brain. We suggest that distinct auditory and motor template systems exist that switch their functions during development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
引导鸟鸣中的感觉运动学习的导师听觉记忆
记忆引导的运动塑造是感觉运动学习的必要条件。声乐学习,如人类婴儿的语言发展和鸟类幼鸟的歌曲学习,首先是通过听到成人的声音形成听觉模板,然后通过听觉反馈与记忆模板进行声音匹配。斑马雀是被广泛使用的鸣禽模型系统,在斑马雀中,只有雄性斑马雀会发展出各自独特的定型歌曲。正常歌声的产生依赖于在发育的关键时期对导师歌声(通常是父亲的歌声)的听觉体验,这一时期包括听觉和感觉运动的协调阶段。导师歌曲的 "听觉模板 "被认为会在大脑中形成,以指导以后的声乐学习,而自己歌曲的 "运动模板 "的形成则被认为是维持成人定型歌曲的必要条件。这些模板在大脑的哪个部位形成,以及它们如何与其他脑区相互作用以指导歌曲学习(可能是模板匹配错误纠正),这些问题仍有待澄清。在此,我们回顾并讨论了有关鸟类大脑中听觉和运动模板的研究。我们认为,听觉模板和运动模板系统是不同的,它们在发育过程中会转换功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
5.70%
发文量
135
审稿时长
4-8 weeks
期刊介绍: Frontiers in Neural Circuits publishes rigorously peer-reviewed research on the emergent properties of neural circuits - the elementary modules of the brain. Specialty Chief Editors Takao K. Hensch and Edward Ruthazer at Harvard University and McGill University respectively, are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Frontiers in Neural Circuits launched in 2011 with great success and remains a "central watering hole" for research in neural circuits, serving the community worldwide to share data, ideas and inspiration. Articles revealing the anatomy, physiology, development or function of any neural circuitry in any species (from sponges to humans) are welcome. Our common thread seeks the computational strategies used by different circuits to link their structure with function (perceptual, motor, or internal), the general rules by which they operate, and how their particular designs lead to the emergence of complex properties and behaviors. Submissions focused on synaptic, cellular and connectivity principles in neural microcircuits using multidisciplinary approaches, especially newer molecular, developmental and genetic tools, are encouraged. Studies with an evolutionary perspective to better understand how circuit design and capabilities evolved to produce progressively more complex properties and behaviors are especially welcome. The journal is further interested in research revealing how plasticity shapes the structural and functional architecture of neural circuits.
期刊最新文献
Comparison of orientation encoding across layers within single columns of primate V1 revealed by high-density recordings. Criticality and universality in neuronal cultures during “up” and “down” states Vasopressin differentially modulates the excitability of rat olfactory bulb neuron subtypes L-methionine and the L-type Ca2+ channel agonist BAY K 8644 collaboratively contribute to the reduction of depressive-like behavior in mice Bilateral and symmetric glycinergic and glutamatergic projections from the LSO to the IC in the CBA/CaH mouse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1