ELECTRE TRI-C with Hesitant Fuzzy Sets and Interval Type 2 Trapezoidal Fuzzy Numbers Using Stochastic Parameters: Application to a Brazilian Electrical Power Company Problem
Javier Pereira, Elaine C. B. de Oliveira, Danielle C. Morais, Ana Paula C. S. Costa, Luciana H. Alencar
{"title":"ELECTRE TRI-C with Hesitant Fuzzy Sets and Interval Type 2 Trapezoidal Fuzzy Numbers Using Stochastic Parameters: Application to a Brazilian Electrical Power Company Problem","authors":"Javier Pereira, Elaine C. B. de Oliveira, Danielle C. Morais, Ana Paula C. S. Costa, Luciana H. Alencar","doi":"10.1007/s40815-024-01775-3","DOIUrl":null,"url":null,"abstract":"<p>ELECTRE TRI-C is a method for sorting problems with imprecise evaluations and stable criteria weights, typically for a single decision-maker. While some extensions have addressed uncertain criteria weights and outranking functions using hesitant fuzzy sets (HFS) and interval type 2 trapezoidal fuzzy numbers (IT2TrfN), there is a gap in handling situations where multiple decision-makers provide uncertain information. This paper presents an extension of the ELECTRE TRI-C method incorporating a stochastic framework to model HFS and IT2TrfN, thereby accommodating subjective judgments from multiple decision-makers. The extended method was validated by sorting 49 projects based on their criticality in a Brazilian electrical power company, involving three decision-makers. The application shows strong correlations in project rankings among decision-makers, but with some exceptions. However, significant variations in acceptability ratings for sorting among decision-makers lead to notable error dispersion, highlighting differences between ranking and sorting outcomes. The key contributions of our approach are as follows: (1) Integration of subjective judgments from multiple decision-makers using IT2TrFN and Monte Carlo Simulation for constructing outranking functions; (2) Aggregation of preferences from multiple decision-makers using HFS; (3) Stochastic processing of both quantitative and qualitative criteria; (4) Integration of linear equations to represent weight constraints; and (5) Introduction of a novel visualization method for comprehensive analysis of stochastic results, enhancing robustness analysis. The proposal’s advantages over alternative methods are also highlighted.</p>","PeriodicalId":14056,"journal":{"name":"International Journal of Fuzzy Systems","volume":"17 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40815-024-01775-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
ELECTRE TRI-C is a method for sorting problems with imprecise evaluations and stable criteria weights, typically for a single decision-maker. While some extensions have addressed uncertain criteria weights and outranking functions using hesitant fuzzy sets (HFS) and interval type 2 trapezoidal fuzzy numbers (IT2TrfN), there is a gap in handling situations where multiple decision-makers provide uncertain information. This paper presents an extension of the ELECTRE TRI-C method incorporating a stochastic framework to model HFS and IT2TrfN, thereby accommodating subjective judgments from multiple decision-makers. The extended method was validated by sorting 49 projects based on their criticality in a Brazilian electrical power company, involving three decision-makers. The application shows strong correlations in project rankings among decision-makers, but with some exceptions. However, significant variations in acceptability ratings for sorting among decision-makers lead to notable error dispersion, highlighting differences between ranking and sorting outcomes. The key contributions of our approach are as follows: (1) Integration of subjective judgments from multiple decision-makers using IT2TrFN and Monte Carlo Simulation for constructing outranking functions; (2) Aggregation of preferences from multiple decision-makers using HFS; (3) Stochastic processing of both quantitative and qualitative criteria; (4) Integration of linear equations to represent weight constraints; and (5) Introduction of a novel visualization method for comprehensive analysis of stochastic results, enhancing robustness analysis. The proposal’s advantages over alternative methods are also highlighted.
期刊介绍:
The International Journal of Fuzzy Systems (IJFS) is an official journal of Taiwan Fuzzy Systems Association (TFSA) and is published semi-quarterly. IJFS will consider high quality papers that deal with the theory, design, and application of fuzzy systems, soft computing systems, grey systems, and extension theory systems ranging from hardware to software. Survey and expository submissions are also welcome.