Zhiyuan Bai, Xuefeng Lu, Boyu Chen, Jiayin Zhang, Di Liu, Dan Yang, Junchen Li, Xin Guo
{"title":"Effect of Grain Gradient on Mechanical Properties of Nanopolycrystalline Ni–Co Alloys","authors":"Zhiyuan Bai, Xuefeng Lu, Boyu Chen, Jiayin Zhang, Di Liu, Dan Yang, Junchen Li, Xin Guo","doi":"10.1002/pssb.202400117","DOIUrl":null,"url":null,"abstract":"At present, gradient‐structure alloys with strong properties can be machined by strong surface plastic deformation. This kind of alloy also has high strength, excellent plastic toughness, and work hardening properties. Herein, nanometer polycrystalline nickel–cobalt alloys with grain gradient are studied. The change of mechanical properties and evolution mechanism of internal defects of graded polycrystalline nickel–cobalt alloys under shear loading are emphatically revealed, and the unusual strengthening mechanism brought about by gradient structure is revealed. The results show that grain gradient microstructure can improve the strength and maintain the toughness of the alloy to a certain extent. The uneven grain boundary distribution due to the gradient structure brings different hindering effects to the dislocation movement. Therefore, the mechanical properties exhibited are different from those of uniform microstructure.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400117","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
At present, gradient‐structure alloys with strong properties can be machined by strong surface plastic deformation. This kind of alloy also has high strength, excellent plastic toughness, and work hardening properties. Herein, nanometer polycrystalline nickel–cobalt alloys with grain gradient are studied. The change of mechanical properties and evolution mechanism of internal defects of graded polycrystalline nickel–cobalt alloys under shear loading are emphatically revealed, and the unusual strengthening mechanism brought about by gradient structure is revealed. The results show that grain gradient microstructure can improve the strength and maintain the toughness of the alloy to a certain extent. The uneven grain boundary distribution due to the gradient structure brings different hindering effects to the dislocation movement. Therefore, the mechanical properties exhibited are different from those of uniform microstructure.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.