{"title":"Patch Antennas Based on Micro QR Codes","authors":"V. Slyusar, I. Sliusar, S. Sheleg","doi":"10.3103/s073527272307004x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The article proposes a new type of broadband patch antennas based on micro QR codes with integrated metamaterial cell as a marker. In this research, several design options were considered that used the variation of the metamaterial cell parameters. For their analysis, the numerical modeling methods of the Ansys EM Suite program were used due to the complexity of describing the interaction of antennas of non-Euclidean geometry with radio waves. Evaluation and comparison of proposed antennas was conducted by the following characteristics: amplitude-frequency response and voltage standing wave ratio. To expand the frequency band of the synthesized antenna has been implemented the split square marker is an element of micro QR. This approach enables the expansion of the relative bandwidth of the corresponding printed antenna to the value of 1.7267 under the condition of the continuous transmission band having a width of 167.935 GHz within the range from 13.29 to 181.225 GHz. In this case, cutouts of the split square marker are located along the line coaxial with the power supply line, and the cutout for the outer “ring” is located below. To synthesize micro QR code, the word “antenna” was used.</p>","PeriodicalId":52470,"journal":{"name":"Radioelectronics and Communications Systems","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioelectronics and Communications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s073527272307004x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The article proposes a new type of broadband patch antennas based on micro QR codes with integrated metamaterial cell as a marker. In this research, several design options were considered that used the variation of the metamaterial cell parameters. For their analysis, the numerical modeling methods of the Ansys EM Suite program were used due to the complexity of describing the interaction of antennas of non-Euclidean geometry with radio waves. Evaluation and comparison of proposed antennas was conducted by the following characteristics: amplitude-frequency response and voltage standing wave ratio. To expand the frequency band of the synthesized antenna has been implemented the split square marker is an element of micro QR. This approach enables the expansion of the relative bandwidth of the corresponding printed antenna to the value of 1.7267 under the condition of the continuous transmission band having a width of 167.935 GHz within the range from 13.29 to 181.225 GHz. In this case, cutouts of the split square marker are located along the line coaxial with the power supply line, and the cutout for the outer “ring” is located below. To synthesize micro QR code, the word “antenna” was used.
期刊介绍:
Radioelectronics and Communications Systems covers urgent theoretical problems of radio-engineering; results of research efforts, leading experience, which determines directions and development of scientific research in radio engineering and radio electronics; publishes materials of scientific conferences and meetings; information on scientific work in higher educational institutions; newsreel and bibliographic materials. Journal publishes articles in the following sections:Antenna-feeding and microwave devices;Vacuum and gas-discharge devices;Solid-state electronics and integral circuit engineering;Optical radar, communication and information processing systems;Use of computers for research and design of radio-electronic devices and systems;Quantum electronic devices;Design of radio-electronic devices;Radar and radio navigation;Radio engineering devices and systems;Radio engineering theory;Medical radioelectronics.