Generalized Bayesian MARS: Tools for Stochastic Computer Model Emulation

IF 2.1 3区 工程技术 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Siam-Asa Journal on Uncertainty Quantification Pub Date : 2024-06-20 DOI:10.1137/23m1577122
Kellin N. Rumsey, Devin Francom, Andy Shen
{"title":"Generalized Bayesian MARS: Tools for Stochastic Computer Model Emulation","authors":"Kellin N. Rumsey, Devin Francom, Andy Shen","doi":"10.1137/23m1577122","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 646-666, June 2024. <br/> Abstract. The multivariate adaptive regression spline (MARS) approach of Friedman [J. H. Friedman, Ann. Statist., 19 (1991), pp. 1–67] and its Bayesian counterpart [D. Francom et al., Statist. Sinica, 28 (2018), pp. 791–816] are effective approaches for the emulation of computer models. The traditional assumption of Gaussian errors limits the usefulness of MARS, and many popular alternatives, when dealing with stochastic computer models. We propose a generalized Bayesian MARS (GBMARS) framework which admits the broad class of generalized hyperbolic distributions as the induced likelihood function. This allows us to develop tools for the emulation of stochastic simulators which are parsimonious, scalable, and interpretable and require minimal tuning, while providing powerful predictive and uncertainty quantification capabilities. GBMARS is capable of robust regression with t distributions, quantile regression with asymmetric Laplace distributions, and a general form of “Normal-Wald” regression in which the shape of the error distribution and the structure of the mean function are learned simultaneously. We demonstrate the effectiveness of GBMARS on various stochastic computer models, and we show that it compares favorably to several popular alternatives.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"92 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/23m1577122","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 646-666, June 2024.
Abstract. The multivariate adaptive regression spline (MARS) approach of Friedman [J. H. Friedman, Ann. Statist., 19 (1991), pp. 1–67] and its Bayesian counterpart [D. Francom et al., Statist. Sinica, 28 (2018), pp. 791–816] are effective approaches for the emulation of computer models. The traditional assumption of Gaussian errors limits the usefulness of MARS, and many popular alternatives, when dealing with stochastic computer models. We propose a generalized Bayesian MARS (GBMARS) framework which admits the broad class of generalized hyperbolic distributions as the induced likelihood function. This allows us to develop tools for the emulation of stochastic simulators which are parsimonious, scalable, and interpretable and require minimal tuning, while providing powerful predictive and uncertainty quantification capabilities. GBMARS is capable of robust regression with t distributions, quantile regression with asymmetric Laplace distributions, and a general form of “Normal-Wald” regression in which the shape of the error distribution and the structure of the mean function are learned simultaneously. We demonstrate the effectiveness of GBMARS on various stochastic computer models, and we show that it compares favorably to several popular alternatives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义贝叶斯 MARS:随机计算机模型仿真工具
SIAM/ASA 不确定性量化期刊》第 12 卷第 2 期第 646-666 页,2024 年 6 月。 摘要。弗里德曼的多变量自适应回归样条线(MARS)方法[J. H. Friedman, Ann. Statist., 19 (1991), pp.在处理随机计算机模型时,传统的高斯误差假设限制了 MARS 以及许多流行的替代方法的实用性。我们提出了一种广义贝叶斯 MARS(GBMARS)框架,它允许将广义双曲分布作为诱导似然函数。这使我们能够开发出用于模拟随机模拟器的工具,这些工具简洁、可扩展、可解释,只需最小的调整,同时提供强大的预测和不确定性量化能力。GBMARS 能够进行 t 分布的稳健回归、非对称拉普拉斯分布的量子回归,以及 "Normal-Wald "回归的一般形式,其中误差分布的形状和均值函数的结构是同时学习的。我们在各种随机计算机模型上演示了 GBMARS 的有效性,并表明它优于几种流行的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Siam-Asa Journal on Uncertainty Quantification
Siam-Asa Journal on Uncertainty Quantification Mathematics-Statistics and Probability
CiteScore
3.70
自引率
0.00%
发文量
51
期刊介绍: SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.
期刊最新文献
The Bayesian Approach to Inverse Robin Problems Covariance Expressions for Multifidelity Sampling with Multioutput, Multistatistic Estimators: Application to Approximate Control Variates Parameter Inference Based on Gaussian Processes Informed by Nonlinear Partial Differential Equations Adaptive Multilevel Subset Simulation with Selective Refinement A Fully Parallelized and Budgeted Multilevel Monte Carlo Method and the Application to Acoustic Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1