Xiaonan He, Yukun Xia, Yuansong Qiao, Brian Lee, Yuhang Ye
{"title":"Semantic guidance incremental network for efficiency video super-resolution","authors":"Xiaonan He, Yukun Xia, Yuansong Qiao, Brian Lee, Yuhang Ye","doi":"10.1007/s00371-024-03488-y","DOIUrl":null,"url":null,"abstract":"<p>In video streaming, bandwidth constraints significantly affect client-side video quality. Addressing this, deep neural networks offer a promising avenue for implementing video super-resolution (VSR) at the user end, leveraging advancements in modern hardware, including mobile devices. The principal challenge in VSR is the computational intensity involved in processing temporal/spatial video data. Conventional methods, uniformly processing entire scenes, often result in inefficient resource allocation. This is evident in the over-processing of simpler regions and insufficient attention to complex regions, leading to edge artifacts in merged regions. Our innovative approach employs semantic segmentation and spatial frequency-based categorization to divide each video frame into regions of varying complexity: simple, medium, and complex. These are then processed through an efficient incremental model, optimizing computational resources. A key innovation is the sparse temporal/spatial feature transformation layer, which mitigates edge artifacts and ensures seamless integration of regional features, enhancing the naturalness of the super-resolution outcome. Experimental results demonstrate that our method significantly boosts VSR efficiency while maintaining effectiveness. This marks a notable advancement in streaming video technology, optimizing video quality with reduced computational demands. This approach, featuring semantic segmentation, spatial frequency analysis, and an incremental network structure, represents a substantial improvement over traditional VSR methodologies, addressing the core challenges of efficiency and quality in high-resolution video streaming.\n</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03488-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In video streaming, bandwidth constraints significantly affect client-side video quality. Addressing this, deep neural networks offer a promising avenue for implementing video super-resolution (VSR) at the user end, leveraging advancements in modern hardware, including mobile devices. The principal challenge in VSR is the computational intensity involved in processing temporal/spatial video data. Conventional methods, uniformly processing entire scenes, often result in inefficient resource allocation. This is evident in the over-processing of simpler regions and insufficient attention to complex regions, leading to edge artifacts in merged regions. Our innovative approach employs semantic segmentation and spatial frequency-based categorization to divide each video frame into regions of varying complexity: simple, medium, and complex. These are then processed through an efficient incremental model, optimizing computational resources. A key innovation is the sparse temporal/spatial feature transformation layer, which mitigates edge artifacts and ensures seamless integration of regional features, enhancing the naturalness of the super-resolution outcome. Experimental results demonstrate that our method significantly boosts VSR efficiency while maintaining effectiveness. This marks a notable advancement in streaming video technology, optimizing video quality with reduced computational demands. This approach, featuring semantic segmentation, spatial frequency analysis, and an incremental network structure, represents a substantial improvement over traditional VSR methodologies, addressing the core challenges of efficiency and quality in high-resolution video streaming.